
APPENDIX A: PIC18 Instructions: Format and Description

OVERVIEW

In the first section of this appendix, we describe the instruction format of the PIC18. Special

emphasis is placed on the instructions using both WREG and file registers. This section includes a list of

machine cycles (clock counts) for each of the PIC18 instructions.

In the second section of this appendix, we describe each instruction of the PIC18. In many cases,

a simple programming example is given to clarify the instruction.

This Appendix deals mainly with PIC18 instructions. In Section A.1, we describe the instruction

formats and categories. In Section A.2, we describe each instruction of PIC18 with some examples.

SECTION A.1: PIC18 Instruction Formats and Categories

As shown in Figure A-1, the PIC18 instructions fall into five categories:

1. Bit-oriented instructions

2. Instructions using a literal value

3. Byte-oriented instructions

4. Table read and write instructions

5. Control instructions using branch and call

In this section, we describe the format and syntax with special emphasis placed on byte-oriented

instructions. For some of the instructions, the reader needs to review the concepts of access bank and bank

registers in Chapter 6 (Section 6.3).

Bit-oriented Instructions

The bit-oriented instructions perform operations on a specific bit of a file register. After the

operation, the result is placed back in the same file register. For example, the “BCF f,b,a” instruction clears

a specific bit of fileReg. See Table A-1. In

these types of instructions, the b is the

specific bit of the fileReg, which can be 0

to 7, representing the D0 to D7 bits of the

register. The fileReg location can be in the

bank register called access bank (if a = 0)

or a location within other bank registers (if

a = 1). Notice that if a = 0, the assembler

assumes the access bank automatically.

Table A-1: Bit-Oriented Instructions (from Microchip datasheet)

Look at the examples that follow for clarification of bit-oriented instructions:

Figure A-1. General Formatting of PIC18 Instructions (From MicroChip)

BCF PORTB,5 ;clear bit D5 of PORTB

BCF TRISB,4 ;clear bit D4 of TRISC reg

BTG PORTC,7 ;toggle bit D7 of PORTC

BTG PORTD,0 ;toggle bit D0 of PORTD

BSF STATUS,C ;set carry flag to one

The following example uses the fileReg in the access bank:

MyReg SET 0x30 ;set aside loc 30H for MyReg

MOVLW 0x0 ;WREG = 0

MOVWF MyReg ;MyReg = 0

BTG MYReg,7 ;toggle bit D7 of MyReg

BTG MYReg,5 ;toggle bit D5 of MyReg

The following example uses the fileReg in the access bank:

MyReg SET 0x50 ;set aside loc. 50H for MyReg

MOVLW 0x0 :WREG = 0

MOVWF MyReg ;MyReg = 0

BTG MYReg,2 ;toggle bit D2 of MyReg

BTG MYReg,4 ;toggle bit D4 of MyReg

As we discuss in Chapter 6, when using a bank other than the access bank, we must load the BSR

(bank select register) with the desired bank number, which can go from 1 to F (in hex), depending on the

family member. We do that by using the MOVLB instruction. Look at the following examples.

The example below uses a location in Bank 2 (RAM locations 200–2FFH).

YReg SET 0x30 ;set aside loc 30H for YReg

MOVLB 0x2 ;use Bank 2 (address loc 230H)

MOVLW 0x0 :WREG = 0

MOVWF YReg ;YReg = 0

BTG YReg,7,1 ;toggle bit D7 of YReg in bank 2

BTG YReg,5,1 ;toggle bit D5 of YReg in bank 2

The example below uses a location in Bank 4 (RAM locations 400–4FFH).

ZReg SET 0x10 ;set aside loc 10H for ZReg

MOVLB 0x4 ;use Bank 4 (address loc 410H)

MOVWL 0x0 ;WREG = 0

MOVWF ZReg ;ZReg = 0

BSF ZReg,6,1 ;set HIGH bit D6 of ZReg in bank 4

BSF ZReg,1,1 ;set HIGH bit D1 of ZReg in bank 4

Notice that all the bit-oriented instructions start with letter B (bit). The branch instructions also start

with letter B, like “BZ target” for branch if zero, but they are not bit-oriented.

Table A-2: Literal Instructions (from Microchip datasheet)

Instructions Using Literal Values

In this type of instruction, an operation is performed on the WREG register and a fixed value called

k. See Table A-2. Because WREG is only 8-bit, the k value cannot be greater than 8-bit. Therefore, the k

value is between 0–255 (00–FF in hex). After the operation, the result is placed back in WREG. Look at

the following examples for clarification:

MOVLW 0x45 ;WREG = 45H

ADDLW 0x24 ;WREG = 45H + 24H = 69H

MOVLW 0x35 ;WREG = 35H

ANDLW 0x0F ;WREG = 35H ANDed with 0FH = 05H

MOVLW 0x55 ;WREG = 55H

XORLW 0xAA ;WREG = 55H EX-ORed with AAH = FFH

Byte-oriented Instructions

There are two groups of instructions in this category. In the first group, the operation is performed

on the file register and the result is placed back in the file register. The instruction “CLRF f,a” is an example

in this group. See Table A-3. In the second group, the operation involves both fileReg and WREG. As a

result, we have the options of placing the result in fileReg or in WREG. As an example in this group,

examine the “ADDWF f,d,a” instruction. The destination for the result can be WREG (if d = 0) or file

register (if d = 1). For the fileReg location, it can be in the access bank (if a = 0) or in other bank registers

(if a = 1). Also notice that if a = 0, the assembler assumes that automatically.

Table A-3: Byte-Oriented Instructions (from Microchip datasheet)

Look at the following examples.

When d = 0 and a = 0:

MyReg SET 0x20 ;loc 20H for MyReg

MOVLW 0x45 ;WREG = 45H

MOVWF MyReg ;MyReg = 45H

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg ;WREG = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as “ADDWF MyReg,0,0”.

When d = 1 and a = 0:

MyReg SET 0x20 ;loc 20H for MyReg

MOVLW 0x45 ;WREG = 45H

MOVWF MyReg ;MyReg = 45H

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg,F ;MyReg = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as “ADDWF MyReg,F,0” or

“ADDWF MyReg,1,0”. As far as the MPLAB is concerned, they mean the same thing. Notice that the use

of letter F in “ADDWF MyReg,F” is being used in place of 1.

To use banks other than the access bank, we must load the BSR register first. The following

example uses a location in Bank 2 (RAM location 200–2FFH).

When d = 0 and a = 1:

MyReg SET 0x30 ;set aside location 30H for MyReg

MOVLB 0x2 ;use Bank 2 (address loc 230H)

MOVLW 0x45 ;WREG = 45H

MOVWF MyReg,1 ;MyReg = 45H (loc 230H)

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg,1 ;WREG = 68H (add loc 230H to W)

When d = 1 and a = 1:

MyReg SET 0x20 ;loc 20H for MyReg

MOVLB 0x4 ;use bank 4

MOVLW 0x45 ;WREG = 45H

MOVWF MyReg ;MyReg = 45H (loc 420H)

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg,F,1 ;MyReg = 68H (loc 420)

Register-indirect addressing mode uses FSRx as a pointer to RAM location. We have three

registers, FSR0, FSR1, and FSR2, that can be used for pointers.

Examples:

ADDWF POSTINC0 ;add to W data pointed to by FSR0,

 ;also increment FSR0

ADDWF POSTINC1 ;add to W data pointed to by FSR1

 ;also increment FSR1

See Example 6-6 in Chapter 6.

Table Processing Instructions

The table processing instructions allow us to read fixed data located in the program ROM of the

PIC18. See Table A-4. They also allow us to write into the program ROM if it is Flash memory. Chapter

14 discusses the TBLRD and TBLWRT instructions in detail. It also shows how to use table read and write

to access the EEPROM.

Table A-4: Table Processing Instructions (from Microchip datasheet)

Control Instructions

The control instructions such as branch and call deal mainly with flow control. See Table A-5. We

must pay special attention to the target address of the control instructions. The target address for some of

the branch instructions such as BZ (branch if zero) cannot be farther than 128 bytes away from the current

instruction. The CALL instruction allows us to call a subroutine located anywhere in the 2M ROM space

of the PIC18. See the individual instructions in the next section for further discussion on this issue.

Table A-5: Control Instructions (from Microchip datasheet)

SECTION A.2: The PIC18 Instruction Set

In this section we provide a brief description of each instruction with some examples.

ADDLW K Add Literal to WREG

Function: ADD literal value of k to WREG

Syntax: ADDLW k

This adds the literal value of k to the WREG register, and places the result back into WREG.

Because register WREG is one byte in size, the operand k must also be one byte.

The ADD instruction is used for both signed and unsigned numbers. Each one is discussed

separately. See Chapter 5 for discussion of signed numbers.

Unsigned Addition

In the addition of unsigned numbers, the status of C, DC, Z, N, and OV may change. The most

important of these flags is C. It becomes 1 when there is a carry from D7 out in 8-bit (D0–D7) operations.

Example:

 MOVLW 0x45 ;WREG = 45H

 ADDLW 0x4F ;WREG = 94H (45H + 4FH = 94H)

 ;C = 0

Example:

 MOVLW 0xFE ;WREG = FEH

 ADDLW 0x75 ;WREG = FE + 75 = 73H

 ;C = 1

Example:

 MOVLW 0x25 ;WREG = 25H

 ADDLW 0x42 ;WREG = 67H (25H + 42H = 67H)

 ;C = 0

Notice that in all the above examples we ignored the status of the OV flag. Although ADD

instructions do affect OV, it is in the context of signed numbers that the OV flag has any significance. This

is discussed next.

Signed Addition and Negative Numbers

In the addition of signed numbers, special attention should be given to the overflow flag (OV)

because this indicates if there is an error in the result of the addition. There are two rules for setting OV in

signed number operation. The overflow flag is set to 1:

1. If there is a carry from D6 to D7 and no carry from D7 out.

1. If there is a carry from D7 out and no carry from D6 to D7.

 Notice that if there is a carry both from D7 out and from D6 to D7, OV = 0.

 Example:

 MOVLW +D'8' ;W = 0000 1000

 ADDLW +D'4' ;W = 0000 1100 OV = 0,

 ;C = 0, N = 0

Notice that N = D7 = 0 because the result is positive, and OV = 0 because there is neither a carry

from D6 to D7 nor any carry beyond D7. Because OV = 0, the result is correct [(+8) + (+4) = (+12)].

Example:

 MOVLW +D'66' ;W = 0100 0010

ADDLW +D'69' ;W = 1000 0101 = -121

 ADDWF ;W = 1000 0111 = -121

 ;(INCORRECT) C = 0, N = D7 = 1, OV = 1

In the above example, the correct result is +135 [(+66) + (+69) = (+135)], but the result was -121.

OV = 1 is an indication of this error. Notice that N = 1 because the result is negative; OV = 1 because there

is a carry from D6 to D7 and C = 0.

Example:

 MOVLW -D'12' ;W = 1111 0100

 ADDLW +D'18' ;W = W + (+0001 0010)

 ;W = 0000 0110 (+6) correct

 ;N = 0, OV = 0, and C = 1

Notice above that the result is correct (OV = 0), because there is a carry from D6 to D7 and a carry

from D7 out.

Example:

 MOVLW -D'30' ;W = 1110 0010

 ADDLW +D'14' ;W = W + 0000 1110

 ;W = 1111 0000 (-16, CORRECT)

 ;N = D7 = 1, OV = 0, C = 0

OV = 0 because there is no carry from D7 out nor any carry from D6 to D7.

Example:

 MOVLW -D'126' ;W = 1000 0010

 ADDLW -D'127' ;W = W + 1000 0001

 ;W = 0000 0011 (+3, INCORRECT)

 ;D7 = N = 0, OV = 1

C = 1 because there is a carry from D7 out but no carry from D6 to D7.

From the above discussion we conclude that while Carry is important in any addition, OV is

extremely important in signed number addition because it is used to indicate whether or not the result is

valid. As we will see in instruction "DAW", the DC flag is used in the addition of BCD numbers.

ADDWF Add WREG and f

Function: ADD WREG and fileReg

Syntax: ADDWF f,d,a

This adds the fileReg value to the WREG register, and places the result in WREG (if d = 0) or

fileReg (if d = 1).

The ADDWF instruction is used for both signed and unsigned numbers. (See ADDLW instruction.)

 Example:

 MyReg SET 0x20 ;loc 20H for MyReg

 MOVLW 0x45 ;WREG = 45H

 MOVWF MyReg ;MyReg = 45H

 MOVLW 0x4F ;WREG = 4FH

 ADDWF MyReg ;WREG = 94H (45H + 4FH =

94H)

 ;C = 0

We can place the result in fileReg, as shown in the following example:

 MyReg SET 0x20 ;loc 20H for MyReg

 MOVLW 0x45 ;WREG = 45H

 MOVWF MyReg ;MyReg = 45H

 MOVLW 0x4F ;WREG = 4FH

 ADDWF MyReg,F ;MyReg = 94H

 ;(45H + 4FH = 94H), C = 0

 For cases of a = 0 and a = 1, see Section A.1 in this chapter.

ADDWFC Add WREG and Carry flag to fileReg

Function: ADD WREG and Carry bit to fileReg

Syntax: ADDWFC f,d,a

This will add WREG and the C flag to fileReg (Destination = WREG + fileReg + C). If C = 1 prior

to this instruction, 1 is also added to destination. If C = 0 prior to the instruction, source is added to

destination plus 0. This instruction is used in multibyte additions. In the addition of 25F2H to 3189H, for

example, we use the ADDWFC instruction as shown below.

Example when d = 0:

Assume we have the following data in RAM locations 0x10 and 0x11

 0x10 = (F2)

 0x11 = (25)

 Reg_L SET 0x10 ;loc 0x10 for Reg_L

 Reg_H SET 0x11 ;loc 0x11 for Reg_H

 BCF STATUS,C ;make carry = 0

 MOVLW 89H ;WREG = 89H

 ADDWFC Reg_L,1 ;Reg_L = 89H + F2H + 0 = 7BH

 ;and C = 1

 MOVLW 0x31 ;WREG = 31H

 ADDWFC Reg_2,1 ;Reg_H = 31H + 25H + 1 = 57H

Therefore, the result is:

 25F2H

 +3189H

 577BH

ANDLW AND Literal byte with WREG

Function: Logical AND literal value k with WREG

 Syntax: ANDLW k

This performs a logical AND on the WREG and the Literal byte

operand, bit by bit, storing the result in the WREG.

Example:

 MOVLW 0x39 ;W = 39H

 ANDLW 0x09 ;W = 39H ANDed with 09

 39H 0011 1001

 09H 0000 1001

 09H 0000 1001

Example:

 MOVLW 32H ;W = 32H 32H 0011 0010

 ANDLW 50H ;AND W with 50H 0101 0000

 ;(W = 10H) 10H 0001 0000

ANDWF AND WREG with fileReg

Function: Logical AND for byte variables

Syntax: ANDWF f,d,a

This performs a logical AND on the fileReg value and the WREG register, bit by bit, and places

the result in WREG (if d = 0) or fileReg (if d = 1).

Example:

 MyReg SET 0x40;set MyReg loc at 0x40

 MOVLW 0x39 ;W = 39H

 MOVWF MyReg ;MyReg = 39H

 MOVLW 0x09

 ANDWF MyReg ;39H ANDed with 09 (W = 09)

 39H 0011 1001

 09H 0000 1001

 09H 0000 1001

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x32 ;W = 32H

 MOVWF MyReg ;MyReg = 32H

 MOVLW 0x0F ;WREG = 0FH

 ANDLW MyReg ;32H ANDed with 0FH (W = 02)

A B A AND

B

0 0 0

0 1 0

1 0 0

1 1 1

 32H 0011 0010

 0FH 0000 1111

 02H 0000 0010

We can place the result in fileReg as shown in the examples below:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x32 ;W = 32H

 MOVWF MyReg ;MyReg = 32H

 MOVLW 0x50 ;WREG = 50H

 ANDLW MyReg,F ;MyReg = 09, WREG = 50H

The instructions below clear (mask) certain bits of the output ports, assuming the ports are

configured as output ports:

 MOVLW 0xFE

 ANDWF PORTB,F ;mask PORTB.0 (D0 of Port B)

 MOVLW 0x7F

 ANDWF PORTC,F ;mask PORTC.7 (D7 of Port C)

 MOVLW 0xF7

 ANDWF PORTD,F ;mask PORTD.3 (D3 of Port D)

Branch Condition

Function: Conditional Branch (jump)

In this type of Branch (jump), control is transferred to a target address if certain conditions are met.

The following is list of branch instructions dealing with the flags:

BC Branch if carry jump if C = 1

BNC Branch if no carry jump if C = 0

BZ Branch if zero jump if Z = 1

BNZ Branch if no zero jump if Z = 0

BN Branch if negative jump if N = 1

BNN Branch if no negative jump if N = 0

BOV Branch if overflow jump if OV = 1

BNOV Branch if no overflow jump if OV = 0

Notice that all “Branch condition” instructions are short jumps, meaning that the target address

cannot be more than -128 bytes backward or +127 bytes forward of the PC of the instruction following the

jump. In other words, the target address cannot be more than -128 to +127 bytes away from the current PC.

What happens if a programmer needs to use a “Branch condition” to go to a target address beyond the -128

to +127 range? The solution is to use the “Branch condition” along with the unconditional GOTO

instruction, as shown below.

 ORG 0x100

 MOVLW 0x87 ;WREG = 87H

 ADDLW 0x95 ;C = 1 after addition

 BNC NEXT ;branch if C = 0

 GOTO OVER ;target more than 128 bytes away

NEXT: ...

 ...

 ...

 ORG 0x5000

OVER: MOVWF PORTD

BC Branch if C = 1

Function: Branch if Carry flag bit = 1

Syntax: BC target_address

This instruction branches if C = 1.

Example:

 MOLW 0x0 ;WREG = 0

 BACK ADDLW 0x1 ;add 1 to WREG

 BC EXIT ;exit if C = 1

 BRA BACK ;keep doing it

 EXIT

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to

+127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BCF Bit Clear fileReg

Function: Clear bit of a fileReg

Syntax: BCF f,b,a

This instruction clears a single bit of a given file register. The bit can be the directly addressable

bit of a port, register, or RAM location. Here are some examples of its format:

 BCF STATUS,C ;C = 0

 BCF PORTB,5 ;CLEAR PORTB.5 (PORTB.5 = 0)

 BCF PORTC,7 ;CLEAR PORTC.7 (PORTC.7 = 0)

 BCF MyReg,1 ;CLEAR D1 OF File Register MyFile

N Branch if N = 1

Function: Jump if Negative flag bit = 1

Syntax: BN target_address

This instruction branches if N = 1. It is used in signed number addition. See ADDLW instruction.

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes

away from the program counter. See Branch Condition for further discussion on this issue.

BNC Branch if no Carry

Function: Branch if Carry flag is 0

Syntax: BNC target_address

This instruction examines the C flag, and if it is zero it will jump (branch) to the target address.

Example: Find the total sum of the bytes F6H, 98H, and 8AH. Save the carries in register C_Reg.

 C_Reg SET 0x20 ;set aside loc 0x20 for carries

 MOVLW 0x0 ;W = 0

 MOVWF C_Reg ;C_Reg = 0

 ADDLW 0xF6

 BNC OVER1

 INCF C_Reg,F

OVER1: ADDLW 0x98

 BNC OVER2

 INCF C_Reg,F

OVER2: ADDWF 0x8A

 BNC OVER3

 INCF C_Reg

OVER3:

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to

+127 bytes away from the program counter. See Branch Condition for further discussion on this.

BNN Branch if Not Negative

Function: Branch if Negative flag bit = 0

Syntax: BNN target address

This instruction branches if N = 0. It is used in signed number addition. See ADDLW instruction.

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes

away from the program counter. See Branch Condition for further discussion on this issue.

BNOV Branch if No Overflow

Function: Jump if overflow flag bit = 0

Syntax: BNOV target_address

This instruction branches if OV = 0. It is used in signed number addition. See ADDLW instruction.

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes

away from the program counter. See Branch Condition for further discussion on this issue.

BNZ Branch if No Zero

Function: Jump if Zero flag is 0

Syntax: BNZ target_address

This instruction branches if Z = 0.

Example:

 CLRF TRISB ;PORTB as output

 CLRF PORTB ;clear PORTB

 OVER INCF PORTB,F ;INC PORTB

 BNZ OVER ;do it until it becomes zero

 Example: Add value 7 to WREG five times.

 COUNTER SET 0x20 ;loc 20H for COUNTER

 MOVLW 0x5 ;WREG = 5

 MOVWF COUNTER ;COUNTER = 05

 MOVLW 0x0 ;WREG = 0

 OVER ADDLW 0x7 ;add 7 to WREG

 DECF COUNTER,F ;decrement counter

 BNZ OVER ;do it until counter is zero

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to

+127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BOV Branch if Overflow

Function: Jump if Overflow flag = 1

Syntax: BOV target_address

This instruction jumps if OV = 1. It is used in signed number addition. See ADDLW instruction.

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes

away from the program counter. See Branch Condition for further discussion on this issue.

BRA Branch unconditional

Function: Branch unconditionally

Syntax: BRA target_address

BRA stands for “Branch.” It transfers program execution to the target address unconditionally. The

target address for this instruction must be within 1K of program memory. This is a 2-byte instruction. The

first 5 bits is the opcode and the rest is the signed number displacement, which is added to the PC (program

counter) of the instruction following the BRA to get the target address. Therefore, in this branch, the target

address must be within -1024 to +1023 bytes of the PC (program counter) of the instruction after the BRA

because the 11-bit address can take values of +1024 to -1023. This address is often referred to as a relative

address because the target address is -1024 to +1023 bytes relative to the program counter (PC).

BSF Bit Set fileReg

Function: Set bit

Syntax: BSF f, b, a

 This sets HIGH the indicated bit of a file register. The bit can be any directly addressable bit of a

port, register, or RAM location.

Examples:

 BSF PORTB,3 ;make PORTB.3 = 1

 BSF PORTC,6 ;make PORTC.6 = 1

 BSF MyReg,2 ;make bit D2 of MyReg = 1

 BSF STATUS,C ;set Carry Flag C = 1

BTFSC Bit Test fileReg, Skip if Clear

Function: Skip the next instruction if bit is 0

Syntax: BTFSC f, b,a

This instruction is used to test a given bit and skip the next instruction if the bit is low. The given

bit can be any of the bit-addressable bits of RAM, ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and, when it becomes low, put 55H in WREG.

 BSF TRISB,5 ;make PORTB.5 an input bit

HERE BTFSC PORTB,5 ;skip if PORTB.5 = 0

 BRA HERE

 MOVLW 0x55 ;because PORTB.5 = 0,

 ;put 55H in WREG

Example: See if WREG has an even number. If so, make it odd.

 BTFSC WREG,0 ;skip if it is odd

 BRA NEXT

 ADDLW 0x1 ;it is even, make it odd

NEXT: ...

BTFSS Bit Test fileReg, Skip if Set

Function: Skip the next instruction if bit is 1

Syntax: BTFSS f, b, a

This instruction is used to test a given bit and skip the next instruction if the bit is HIGH. The

given bit can be any of the bit-addressable bits of RAM, ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and when it becomes HIGH, put 55H in WREG.

 BSF TRISB,5 ;make PORTB.5 an input bit

HERE BTFSS PORTB,5 ;skip if PORTB.5 = 1

 BRA HERE

 MOVLW 55H ;because PORTB.5 = 0 WREG = 55H

Example: See if WREG has an odd number. If so, make it even.

 BTFSS WREG,0 ;skip if it is even

 BRA NEXT

 ADDLW 0x01 ;it is even, make it odd

NEXT: ...

BTG Bit Toggle fileReg

Function: Toggle (Complement) bit

Syntax: BTG f, b, a

This instruction complements a single bit. The bit can be any bit-addressable location in the PIC18.

Example:

 BCF TRISB,0 ;make PORTB.0 an output

AGAIN BTG PORTB,0 ;complement PORTB.0 bit

 BRA AGAIN ;continuously forever

Example: Toggle PORTB.7 a total of 150 times.

 COUNTER SET 0x20 ;loc 20H for COUNTER

 MOVLW ‘D’150 ;WREG = 150

 MOVWF COUNTER ;COUNTER = 150

 BCF TRISB,7 ;make PORTB.7 an output

 OVER BTG PORTB.7 ;toggle PORTB.7

 DECF COUNTER,F ;decrement and put it in

 ;COUNTER

 BNZ OVER ;do it 150 times

BZ Branch if Zero

Function: Branch if Z = 1

Syntax: BZ target_address

Example: Keep checking PORTB for value 99H.

 SETF TRISB ;port B as input

 BACK MOVFW PORTB ;get PORTB into WREG

 SUBLW 0x99 ;subtract 99H from it

 BZ EXIT ;if 0x99, exit

 BRA BACK ;keep checking

 ...

EXIT: ...

 Example: Toggle PORTB 150 times.

 MyReg SET 0x40 ;loc 40H for MyReg

 SETF TRISB ;port B as output

 MOVLW D'150' ;WREG = 150

 MOVWF MyReg

 BACK COMF PORTB ;toggle PORTB

 DECF MyReg,F ;decrement MyReg

 BZ EXIT ;if MyReg = 0, exit

 BRA BACK ;keep toggling

 ...

EXIT: ...

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to

+127 bytes away from the program counter. See Branch Condition for further discussion on this.

CALL

Function: Transfers control to a subroutine

Syntax: CALL k,s ;s is used for fast context switching

The Call instruction is a 4-byte instruction. The first 12 bits are used for the opcode and the rest

(20 bits) are set aside for the address. A 20-bit address allows us to reach the target address anywhere in

the 2M ROM space of the PIC18. If calling a subroutine, the PC register (which has the address of the

instruction after the CALL) is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then

the program counter is loaded with the new address and control is transferred to the subroutine. At the end

of the procedure, when RETURN is executed, PC is popped off the stack, which returns control to the

instruction after the CALL.

Notice that CALL is a 4-byte instruction, in which 12 bits are the opcode, and the other 20 bits are

the 20-bit address of an even address location. Because all the PIC18 instructions are 2 bytes in size, the

lowest address bit, A0, is automatically set to zero to make sure that the CALL instruction will not land at

the middle of the targeted instruction. The 20-bit address of the CALL provides the A20–A1 part of the

address and with the A0 = 0, we have the 21-bit address needed to go anywhere in the 2M address space of

the PIC18.

We have two options for the “CALL k,s” instruction. They are s = 0, and s = 1. When s = 0, it is

simply calling a subroutine. With s = 1, we are calling a subroutine and we are also asking the CPU to save

the three major registers of WREG, STATUS, and BSR in internal buffers (shadow registers) for the

purpose of context-switching. This fast context-switching can be used only in the main subroutine because

the depth of the shadow registers is only one. That means no nested call with the s = 1. Look at the following

case:

 ORG 0x0

MAIN

 CALL M_SUB,1 ;call and save the registers

 MOVLW 0x55 ;address of this instruction is saved on stack

;-------------------------

 ORG 0x2000

M_SUB

 CALL Y_SUB ;we cannot use CALL Y_SUB,1

 MOVLW 0xAA ;address of this instruction is saved on stack

 RETURN,1 ;return to caller and restore the registers

 ;notice the s = 1 for RETURN

;-----------------------------------

 ORG 0x3000

Y_SUB

 RETURN

;-------------------------------

 END

As shown in RETURN instruction, we also have two options for the RETURN: s = 0 and s = 1. If

we use s = 1 for the CALL, we must also use s = 1 for the RETURN. Notice that “CALL Target” with no

number after it is interpreted as s = 0 by the assembler. Likewise, the “RETURN” with no number after it

is interpreted as s = 0 by the assembler.

CLRF Clear fileReg

Function: Clear

Syntax: CLRF f, a

This instruction clears the entire byte in the fileReg. All bits of the register are cleared to 0.

Example:

 MyReg SET 0x20 ;loc 20H for MyReg

 CLRF MyReg ;clear MyReg

 CLRF TRISB ;clear TRISB (make PORTB output)

 CLRF PORTB ;clear PORTB

 CLRF TMR01L ;TMR0L = 0

Notice that in this instruction the result can be placed in fileReg only and there is no option for the

WREG to be used as the destination.

CLRWDT

Function: Clear Watchdog Timer

Syntax: CLRWDT

This instruction clears the Watchdog Timer.

COMF Complement the fileReg

Function: Complement a fileReg

Syntax: COMF f, d, a

 This complements the contents of a given fileReg. The result is the 1's complement of the register;

that is, 0s become 1s and 1s become 0s. The result can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:

 MOVLW 0x0 ;WREG = 0

 MOVWF TRISB ;Make PORTB an output port

 MOVLW 0x55 ;WREG = 01010101

 MOVWF PORTB

AGAIN COMF PORTB,F ;complement (toggle) PORTB

 CALL DELAY

 BRA AGAIN ;continuously (notice WREG = 55H)

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x39 ;W = 39H

 MOVWF MyReg ;MyReg = 39H

 COMPF MyReg,F ;MyReg = C6H and WREG = 39H

Where 39H (0011 1001 bin) becomes C6H (1100 0110).

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x55 ;W = 55H

 MOVWF MyReg ;MyReg = 55H

 COMPF MyReg,F ;MyReg AAH, WREG = 55H

where 55H (0101 0101) becomes AAH (1010 1010).

Example: Toggle PORTB 150 times.

 COUNTER SET 0x40 ;loc 40H for COUNTER

 SETF TRISB ;port B as output

 MOVLW D'150' ;WREG = 150

 MOVWF COUNTER ;COUNTER = 150

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 DECF COUNTER,F ;decrement COUNTER

 BNZ BACK ;toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x39 ;W = 39H

 MOVWF MyReg ;MyReg = 39H

 COMPF MyReg ;MyReg = 39H and WREG = C6H

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x55 ;W = 55H

 MOVWF MyReg ;MyReg = 55H

 COMPF MyReg ;WREG = AA and MyReg 55H SETF

CPFSEQ Compare FileReg with WREG and skip if equal (F = W)

Function: Compare fileReg and WREG and skip if they are equal

Syntax: CPFSEQ f, a

The magnitudes of the fileReg byte and WREG byte are compared. If they are equal, it skips the

next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get out only when PORTB

has the value 99H.

SETF TRISB ;PORTB an input port

 MOVLW 0x99 ;WREG = 99h

BACK CPFSEQ PORT B ;skip if PORTB has 0x99

 BRA BACK ;keep monitoring

Notice that CPFSEQ skips only when fileReg and WREG have equal values.

CPFSGT Compare FileReg with WREG and skip if greater (F > W)

Function: Compare fileReg and WREG and skip if fileReg > WREG.

Syntax: CPFSGT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If fileReg is larger than the

WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get out only when PORTB

has a value greater than 99H.

 SETF TRISB ;PORTB an input port

 MOVLW 0x99 ;WREG = 99H

BACK CPFSGT PORTB ;skip if PORTB > 99H

 BRA BACK ;keep monitoring

Notice that CPFSGT skips only if FileReg is greater than WREG.

CPFSLT Compare FileReg with WREG and skip if less than (F < W)

Function: Compare fileReg and WREG and skip if fileReg < WREG.

Syntax: CPFSLT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If fileReg is less than the

WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get out only when PORTB

has a value less than 99H.

 SETF TRISB ;PORTB an input port

 MOVLW 0x99 ;WREG = 99H

BACK: CPFSEQ PORTB ;skip if PORTB < 99H

 BRA BACK ;keep monitoring

Notice that CPFSLT skips only if FileReg < WREG.

DAW

Function: Decimal-adjust WREG after addition

Syntax: DAW

This instruction is used after addition of BCD numbers to convert the result back to BCD. The data

is adjusted in the following two possible cases:

1. It adds 6 to the lower 4 bits of WREG if it is greater than 9 or if DC = 1.

2. It also adds 6 to the upper 4 bits of WREG if it is greater than 9 or if C = 1.

 Example:

 MOVLW 0x47 ;WREG = 0100 0111

 ADDLW 0x38 ;WREG = 47H + 38H = 7FH,

 ;invalid BCD

 DAW ;WREG = 1000 0101 = 85H, valid BCD

 47H

 + 38H

 7FH (invalid BCD)

 + 6H (after DAW)

 85H (valid BCD)

In the above example, because the lower nibble was greater than 9, DAW added 6 to WREG. If

the lower nibble is less than 9 but DC = 1, it also adds 6 to the lower nibble. See the following example:

 MOVLW 0x29 ;WREG = 0010 1001

 ADDLW 0x18 ;WREG = 0100 0001 INCORRECT

 DAW ;WREG = 0100 0111 = 47H VALID BCD

 29H

 + 18H

 41H (incorrect result in BCD)

 + 6H

 47H correct result in BCD

 The same thing can happen for the upper nibble. See the following example:

 MOVLW 0x52 ;WREG = 0101 0010

 ADDLW 0x91 ;WREG = 1110 0011 INVALID BCD

 DAW ;WREG = 0100 0011 AND C = 1

 52H

 + 91H

 E3H (invalid BCD)

 + 6 (after DAW, adding to upper nibble)

 143H valid BCD

Similarly, if the upper nibble is less than 9 and C = 1, it must be corrected. See the following

example:

 MOVLW 0x94 ;W = 1001 0100

 ADDLW 0x91 ;W = 0010 0101 INCORRECT

 DAW ;W = 1000 0101, VALID BCD

 ;FOR 85, C = 1

 94H

 + 91H

 125H (incorrect BCD)

 + 6 (after DAW, adding to upper nibble)

 185

It is possible that 6 is added to both the high and low nibbles. See the following example:

 MOVLW 0x54 ;WREG = 0101 0100

 ADDLW 0x87 ;WREG = 1101 1011 INVALID BCD

 DAW ;WREG = 0100 0001, C = 1 (BCD 141)

 54H

 + 8 7 H

 D BH (invalid result in BCD)

 + 6 6H

 141H valid BCD

DECF Decrement fileReg

Function: Decrement fileReg

Syntax: DECF f, d, a

This instruction subtracts 1 from the byte operand in fileReg. The result can be placed in WREG

(if d = 0) or fileReg (if d = 1).

Example:

 MyReg SET 0x40 ;set aside loc 40H for MyReg

 MOVLW 0x99 ;WREG = 99H

 MOVWF MyReg ;MyReg = 99H

 DECF MyReg,F ;MyReg = 98H, WREG 99H

 DECF MyReg,F ;MyReg = 97H, WREG 99H

 DECF MyReg,F ;MyReg = 96H, WREG 99H

Example: Toggle PORTB 250 times.

 COUNTER SET 0x40 ;loc 40H for COUNTER

 SETF TRISB ;PORTB as output

 MOVLW D'250' ;WREG = 250

 MOVWF COUNTER ;COUNTER = 250

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 DECF COUNTER,F ;decrement COUNTER

 BNZ BACK ;toggle until counter becomes 0

 We can place the result in WREG as shown in the examples below:

 MyReg SET 0x40 ;set aside loc for MyReg

 MOVLW 0x99 ;WREG = 99H

 MOVWF MyReg ;MyReg = 99H

 DECF MyReg ;WREG = 98H, MyReg = 99H

 DECF MyReg ;WREG = 97H, MyReg = 99H

 DECF MyReg ;WREG = 96H, MyReg = 99H

Example:

 MyReg SET 0x50 ;set MyReg loc at 0x50

 MOVLW 0x39 ;W = 39H

 MOVWF MyReg ;MyReg = 39H

 DECF MyReg ;WREG = 38H and MyReg = 39H

 DECF MyReg ;WREG = 37H and MyReg = 39H

 DECF MyReg ;WREG = 36H and MyReg = 39H

 DECF MyReg ;WREG = 35H and MyReg = 39H

DECFSZ Decrement fileReg and Skip if zero

Function: Decrement fileReg and skip if fileReg has zero in it

Syntax: DECFSZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result is zero, then it skips

execution of the next instruction.

Example: Toggle PORTB 250 times.

 COUNT SET 0x40 ;loc 40H for COUNT

 CLRF TRISB ;PORTB an output

 MOVLW D'250' ;WREG = 250

 MOVWF COUNT ;COUNT = 250

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 DECFSZ COUNT,F ;decrement COUNT and

 ;skip if zero

 BRA BACK ;toggle until counter becomes 0

DECFSNZ Decrement fileReg and skip if not zero

Function: Decrement fileReg and skip if fileReg has other than zero

Syntax: DECFSNZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result is not zero, then it skips

execution of the next instruction.

Example: Toggle PORTB 250 times continuously.

 COUNT SET 0x40 ;loc 40H for COUNT

 CLRF TRISB ;PORTB an output

 OVER MOVLW D'250' ;WREG = 250

 MOVWF COUNT ;COUNT = 250

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 DECFSNZ COUNT,F ;decrement COUNT and

 ;skip if zero

 BRA OVER ;start over

 BRA BACK ;toggle until counter becomes 0

GOTO Unconditional Branch

Function: Transfers control unconditionally to a new address.

Syntax: GOTO k

In the PIC18 there are two unconditional branches (jumps): GOTO (long jump) and BRA (short

jump). Each is described next.

1. GOTO (long jump): This is a 4-byte instruction. The first 12 bits are the opcode, and the next 20 bits

are an even address of the target location. Because all the PIC18 instructions are 2 bytes in size, the

lowest address bit, A0, is automatically set to zero to make sure that the GOTO instruction will not land

at the middle of the targeted instruction. The 20-bit address of the GOTO provides the A20–A1 part of

the address and with A0 = 0, we have the 21-bit address needed to go anywhere in the 2M address space

of the PIC18.

2. BRA: This is a 2-byte instruction. The first 5 bits are the opcode and the remaining 11 bits are the

signed number displacement, which is added to the PC (program counter) of the instruction following

the BRA to get the target address. Therefore, for the BRA instruction the target address must be within

-1023 to +1024 bytes of the PC of the instruction after the BRA because a 11-bit address can take values

of +1023 to -1024.

While GOTO is used to jump to any address location within the 2M code space of the PIC18, BRA

is used to jump to a location within the 1K ROM space. The advantage of BRA is the fact that it takes 2

bytes of program ROM, while GOTO takes 4 bytes. BRA is widely used in chips with a small amount of

program ROM and a limited number of pins.

 Notice that the difference between GOTO and CALL is that the CALL instruction will return and

continue execution with the instruction following the CALL, whereas GOTO will not return.

 INCF Increment fileReg

Function: Increment

Syntax: INCF f, d, a

 This instruction adds 1 to the byte operand in fileReg. The result can be placed in WREG (if d =

0) or fileReg (if d = 1).

Example:

 MyReg SET 0x40 ;set aside loc 40H for MyReg

 MOVLW 0x99 ;WREG = 99H

 MOVWF MyReg

 INCF MyReg,F ;MyReg = 9AH, WREG 99H

 INCF MyReg,F ;MyReg = 9BH, WREG 99H

 DECF MyReg,F ;MyReg = 9CH, WREG 99H

Example: Toggle PORTB 5 times.

 COUNTER SET 0x40 ;loc 40H for COUNTER

 SETF TRISB ;PORTB as output

 MOVLW D’251’ ;WREG = 251

 MOVWF COUNTER ;COUNTER = 251

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 INCF COUNTER,F ;INC COUNTER

 BNC BACK ;toggle until counter becomes 0

We can place the result in fileReg as shown in the examples below:

 MyReg SET 0x40 ;set aside loc for MyReg

 MOVLW 0x99 ;WREG = 99H

 MOVWF MyReg ;MyReg = 99H

 INCF MyReg ;WREG = 9AH, MyReg = 99H

 INCF MyReg ;WREG = 9BH, MyReg = 99H

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x5 ;W = 05H

 MOVWF MyReg ;MyReg = 05H

 INCF MyReg ;WREG = 06H and MyReg = 05H

INCFSZ Increment fileReg and skip if zero

Function: Increment

Syntax: INCFSZ f, d, a

This instruction adds 1 to fileReg and if the result is zero it skips the next instruction.

Example: Toggle PORTB 156 times.

 COUNTER SET 0x40 ;loc 40H for COUNTER

 SETF TRIS ;PORTB as output

 MOVLW D'156' ;WREG = 156

 MOVWF COUNTER ;COUNTER = 156

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 INCFSZ COUNTER,F ;INC COUNTER and skip if 0

 BRA BACK ;toggle until counter becomes 0

INCFSNZ Increment fileReg and skip if not zero

Function: Increment

Syntax: INFSNZ f, d, a

This instruction adds 1 to the register or memory location specified by the operand. If the result is

not zero, it skips the next instruction.

Example: Toggle PORTB 156 times continuously.

 COUNTER SET 0x40 ;loc 40H for COUNTER

 SETF TRISB ;PORTB as output

 OVER MOVLW D'156' ;WREG = 156

 MOVWF COUNTER ;COUNTER = 156

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 INCFSNZ COUNTER,F ;INC COUNTER, skip if not 0

 BRA OVER ;start over

 BRA BACK ;toggle until counter becomes 0

IORLW OR K value with WREG

Function: Logical-OR WREG with value k

Syntax: IORLW k

This performs a logical OR on the WREG register and k value, bit by

bit, and stores the result in WREG.

Example:

 MOVLW 0x30 ;W = 30H

 IORLW 0x 09 ;now W = 39H

 39H 0011 0000

 09H 0000 1001

 39 0011 1001

Example:

MOVLW 0x32 ;W = 32H

 IORLW 0x50 ;(W = 72H)

 32H 0011 0010

 50H 0101 0000

 72H 0111 0010

IORWF OR FileReg with WREG

Function: Logical-OR fileReg and WREG

Syntax: IORWF f, d, a

This performs a logical OR on the fileReg value and the WREG register, bit by bit, and places the

result in WREG (if d = 0) or fileReg (if d = 1).

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x39 ;WREG = 39H

 MOVWF MyReg ;MyReg = 39H

 MOVLW 0x07

 IORWF MyReg ;39H ORed with 07 (W = 3F)

 39 0011 1001

 07 0000 0111

 3F 0011 1111

Example:

 MyReg SET 0x40 ;set MyReg loc at 0x40

 MOVLW 0x5 ;WREG = 05H

 MOVWF MyReg ;MyReg = 05H

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

 MOVLW 0x30

 IORWF MyReg ;30H ORed with 05 (W = 35H)

 05 0000 0101

 30 0011 0000

 35 0011 0101

We can place the result in fileReg as shown in the examples below:

 MOVLW 0x30 ;W = 30H

 IORWF PORTB,F ;W and PORTB are ORed and result

 ;goes to PORTB

Example:

 MyReg SET 0x20

 MOVLW 0x54 ;WREG = 54H

 MOVWF MyReg

 MOVLW 0x67 ;WREG = 67H

 IORWF MyReg,F ;OR WREG and MyReg

 ;after the operation MyReg = 77H

 44H 0101 0100

 67H 0110 0111

 77H 0111 0111 Therefore MyReg will have 77H, WREG = 54H.

LFSR Load FSR

Function: Load into FSR registers a 12-bit value of k

Syntax: LFSR f,k ;k is between 000 and FFFH

This loads a 12-bit value into one of the FSR registers of FSR0, FSR1, or FSR2.

LFSR 0 , 0x200 ;FSR0 = 200H

LFSR 1 , 0x050 ;FSR1 = 050H

LFSR 2 , 0x160 ;FSR2 = 160H

This is widely used in register indirect addressing mode. See Chapter 6.

MOVF (or MOVFW) Move fileReg to WREG

 Function: Copy byte from fileReg to WREG

Syntax MOVF f, d, a:

This instruction is widely used for moving data from a fileReg to WREG. Look at the following

examples:

 CLRF TRISC ;PORTC output

 SETF TRISB ;PORTB as input

 MOVFW PORTB ;copy PORTB to WREG

 ANDLW 0x0F ;mask the upper 4 bits

 MOVWF PORTC ;put it in PORTC

Example:

 CLRF TRISD ;PORTD as output

 SETF TRISB ;PORTB as input

 MOVFW PORTB ;copy PORTB to WREG

 IORW 0x30 ;OR it with 30H

 MOVWF PORTD ;put it in PORTD

This instruction can be used to copy the fileReg to itself in order to get the status of the N and Z

flags. Look at the following example.

Example:

 MyReg SET 0x20 ;set aside loc 0x20 to MyReg

 MOVLW 0x54 ;W = 54H

 MOVWF MyReg ;MyReg = 54H

 MOVFW MyReg,F ;My Reg = 54, also N = 0 and Z = 0

MOVFF Move FileReg to Filereg

Function: Copy byte from one fileReg to another fileReg

Syntax: MOVFF fs, fd

This copies a byte from the source location to the destination. The source and destination locations

can be any of the file register locations, SFRs, or ports.

MOVFF PORTB,MyReg

MOVFF PORTC,PORTD

MOVFF RCREG,PORTC

MOVFF Reg1,REG2

Notice that this a 4-byte instruction because the source and destination address each take 12 bits of

the instruction. That means the 24 bits of the instruction are used for the source and destination addresses.

The 12-bit address allows data to be moved from any source location to any destination location within the

4K RAM space of the PIC18.

MOVLB Move Literal 4-bit value to lower 4-bit of the BSR

Function: Move 4-bit value k to lower 4 bits of the BSR registers

Syntax: MOVLB k ;k is between 0 and 15 (0–F in hex)

We use this instruction to select a register bank other than the access bank. With this instruction

we can load into the BSR (bank selector register) a 4-bit value representing one of 16 banks supported by

the PIC18. That means the values between 0000 and 1111 (0–F in hex). For examples of the MOVLB

instruction, see Chapter 6 and Section A.1 in this chapter.

MOVLW K Move Literal to WREG

Function: Move 8-bit value k to WREG

Syntax: MOVLW k ;k is between 0 and 255 (0–FF in hex)

Example:

MOVLW 0x55 ;WREG = 55H

MOVLW 0x0 ;clear WREG (WREG = 0)

MOVLW 0xC2 ;WREG = C2H

MOVLW 0x7F ;WREG = 7FH

This instruction, along with the MOVWF, is widely used to load fixed values into any port, SFR,

or fileReg location. See the next instruction to see how it is used.

MOVWF Move WREG to a fileReg

Function: Copy the WREG contents to a fileReg

Syntax: MOVWF f, a

This copies a byte from WREG to fileReg. This instruction is widely used along with the MOVLW

instruction to load any of the fileReg locations, SFRs, or PORTs with a fixed value. See the following

examples:

Example: Toggle PORTB.

MOVLW 0x55 ;WREG = 55H

MOVWF PORTB

MOVLW 0xAA ;WREG = AAH

MOVWF PORTB

BRA OVER ;keep toggling the PORTB

Example: Load RAM location 20H with value 50H.

MyReg SET 0x20 ;set aside the loc 0x20 for MyReg

MOVLW 0x50

MOVWF MyReg ;MyReg = 50H (loc 20H has 50H)

Example: Initialize the Timer0 low and high registers.

MOVLW 0x05 ;WREG = 05H

MOVWF TMR0H ;TMR0H = 0x5

MOVLW 0x30 ;WREG = 30H

MOVWF TMR0L ;TMR0L = 0x30

MULLW Multiply Literal with WREG

Function: Multiply k x WREG

Syntax: MULLW k

This multiplies an unsigned byte k by an unsigned byte in register WREG and the 16-bit result is

placed in registers PRODH and PRODL, where PRODL has the lower byte and PRODH has the higher

byte.

Example:

 MOVLW 0x5 ;WREG = 5H

 MULLW 0x07 ;PRODL = 35 = 23H, PRODH = 00

Example:

 MOVLW 0x0A ;WREG = 10

 MULLW 0x0F ;PRODL = 10 x 15 = 150 = 96H

 ;PRODH = 00

Example:

 MOVLW 0x25

 MULLW 0x78 ;PRODL = 58H, PRODH = 11H

 ;because 25H x 78H = 1158H

Example:

 MOVLW D'100' ;WREG = 100

 MULLW D'200' ;PRODL = 20H, PRODH = 4EH

 ;(100 x 200 = 20,000 = 4E20H)

MULWF Multiply WREG with fileReg

Function: Multiply WREG x fileReg and place the result in

 PRODH:PROFDL registers

Syntax: MULWF f, a

This multiplies an unsigned byte in WREG by an unsigned byte in the fileReg register and the

result is placed in PRODL and PRODH, where PRODL has the lower byte and PRODH has the higher

byte.

Example:

 MyReg SET 0x20 ;MyReg has location of 0x20

 MOVLW 0x5

 MOVWF MyReg ;MyReg has 0x5

 MOVLW 0x7 ;WREG = 0x7

 MULWF MyReg ;PRODL = 35 = 23H, PRODH = 00

Example:

 MOVLW 0x0A

 MOVWF MyReg ;MyReg = 10

 MOVLW 0x0F ;WREG = 15

 MULFW MyReg ;PRODL = 150 = 96H, PRODH = 00

Example:

 MOVLW 0x25

 MOVWF MyReg ;MyReg = 0x25

 MOVLW 0x78 ;WREG 78H

 MULWF Myreg ;PRODL = 58H, PRODH = 11H

 ;(25H x 78H = 1158H)

Example:

 MOVLW D'100' ;WREG = 100

 MOVWF MyReg ;MyReg = 100

 MOVLW D'200' ;WREG = 200

 MULWF MyReg ;PRODL = 20H, PRODH = 4EH

 ;(100 x 200 = 20,000 = 4E20H)

 NEGF Negate fileReg

Function: No operation

Syntax: NEGF f, a

This performs 2’s complement on the value stored in fileReg and places it back in fileReg.

Example:

 MyReg SET 0x30

 MOVLW 0x98 ;WREG = 0x98

 MOVWF MyReg ;MyReg = 0x98

 NEGF ;2’s complement fileReg

 98H 10011000

 01100111 1’s complement

 + 1

 01101000 Now FileReg = 68H

Example:

 MyReg SET 0x10

 MOVLW 0x75 ;WREG = 0x75

 MOVWF MyReg ;MyReg = 0x75

 NEGF ;2’s complement fileReg

 75H 01110101

 10001010 1’s complement

 + 1

 10001011 Now FileReg = 7AH

Notice that in this instruction we cannot place the result in the WREG register.

NOP No Operation

Function: No operation

Syntax: NOP

This performs no operation and execution continues with the next instruction. It is sometimes used

for timing delays to waste clock cyles. This instruction only updates the PC (program counter) to point to

the next instruction following NOP. In PIC18, this a 2-byte instruction.

POP POP Top of Stack

Function: Pop from the stack

Syntax: POP

This takes out the top of stack (TOS) pointed to by SP (stack pointer) and discards it. It also

decrements SP by 1. After the operation, the top of the stack will be the value pushed onto the stack

previously.

PUSH PUSH Top of the Stack

Function: Push the PC onto the stack

Syntax: PUSH

This copies the program counter (PC) onto the stack and increments SP by 1, which means the

previous top of the stack is pushed down.

RCALL Relative Call

Function: Transfers control to a subroutine within 1K space

Syntax: RCALL target_address

There are two types of CALLs: RCALL and CALL. In RCALL, the target address is within 1K of

the current PC (program counter). To reach the target address in the 2M ROM space of the PIC18, we must

use CALL. In calling a subroutine, the PC register (which has the address of the instruction after the

RCALL) is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the program counter

is loaded with the new address and control is transferred to the subroutine. At the end of the procedure,

when RETURN is executed, PC is popped off the stack, which returns control to the instruction after the

RCALL.

Notice that RCALL is a 2-byte instruction, in which 5 bits are used for the opcode and the remaining

11 bits are used for the target subroutine address. An 11-bit address limits the range to –1024 to +1023.

See the CALL instruction for discussion of the target address being anywhere in the 2M ROM space of the

PIC18. Notice that RCALL is a 2-byte instruction while CALL is a 4-byte instruction. Also notice that the

RCALL does not have the option of context saving, as CALL has.

RESET Reset (by software)

Function: Reset by software

Syntax: RESET

This instruction is used to reset the PIC18 by way of software. After execution of this instruction,

all the registers and flags are forced to their reset condition. The reset condition is created by activating the

hardware pin MCLR. In other words, the RESET instruction is the software version of the MCLR pin.

RETFIE Return from Interrupt Exit

Function: Return from interrupt

Syntax: RETFIE s

This is used at the end of an interrupt service routine (interrupt handler). The top of the stack is

popped into the program counter and program execution continues at this new address. After popping the

top of the stack into the program counter (PC), the stack pointer (SP) is decremented by 1.

Notice that while the RETURN instruction is used at the end of a subroutine associated with the

CALL and RCALL instructions, RETFIE must be used for the interrupt service routines (ISRs).

RETLW Return with Literal in WREG

Function: The k value is placed in WREG and the top of the stack is the placed in PC

(program counter)

Syntax: RETLW k

 After execution of this instruction, the k value is loaded into WREG and the top of the stack is

popped into the program counter (PC). After popping the top of the stack into the program counter, the

stack pointer (SP) is decremented by 1. This instruction is used for the implementation of a look-up table.

See Section 6.3 in Chapter 6.

RETURN Return

Function: Return from subroutine

Syntax: RETURN s ;where s = 0 or s = 1

This instruction is used to return from a subroutine previously entered by instructions CALL or

RCALL. The top of the stack is popped into the program counter (PC) and program execution continues

at this new address. After popping the top of the stack into the program counter, the stack pointer (SP) is

decremented by 1. For the case of “RETURN s” where s = 1, the RETURN will also restore the context

registers. See the CALL instruction for the case of s = 1. Notice that “RETURN 1” cannot be used for

subroutines associated with RCALL.

RLCF Rotate Left Through Carry the fileReg

Function: Rotate fileReg left through carry

0Syntax: RLCF f, d, a

This rotates the bits of a fileReg register left.

The bits rotated out of fileReg are rotated into C, and the

C bit is rotated into the opposite end of the fileReg

register.

 Example:

 MyReg SET 0x30 ;set aside loc 30H for MyReg

BCF STATUS,C ;C = 0

 MOVLW 0x99 ;WREG = 99H

 MOVWF MyReg ;MyReg = 99H = 10011001

 RLCF MyReg,F ;now MyReg = 00110010 and

 ;C = 1

 RLCF MyReg,F;now MyReg = 01100101 and

 ;C = 0

RLNCF Rotate left not through Carry

Function: Rotate left the fileReg

Syntax: RLNCF f, d, a

This rotates the bits of a fileReg register left. The

bits rotated out of fileReg are rotated back into fileReg at

the opposite end.

Example:

 MyReg SET 0x20 ;set aside loc 20 for MyReg

 MOVLW 0x69 ;WREG = 01101001

 MOVWF MyReg ;MyReg = 69H = 01101001

 RLNCF MyReg,F ;now MyReg = 11010010

 RLNCF MyReg,F ;now MyReg = 10100101

 RLNCF MyReg,F ;now MyReg = 01001011

 RLNCF MyReg,F ;now MyReg = 10010110

Notice that after four rotations, the upper and lower nibbles are swapped.

RRCF Rotate Right through Carry

Function: Rotate fileReg right through carry

Syntax: RRCF f, d, a

This rotates the bits of a fileReg register right.

The bits rotated out of the register are rotated into C, and

the C bit is rotated into the opposite end of the register.

Example:

 MyReg SET 0x20 ;set

aside loc 20 for MyReg

 BSF STATUS,C ;C = 1

 MOVLW 0x99 ;WREG = 10011001

 MOVWF MyReg ;MyReg = 99H = 10011001

 RRCF MyReg,F ;now MyReg = 11001100, C = 1

 RRCF MyReg,F ;now MyReg = 11100110, C = 0

RRNCF Rotate Right not through Carry

Function: Rotate fileReg right

Syntax: RRNCF f, d, a

This rotates the bits of a fileReg register right.

The bits rotated out of the register are rotated back into

fileReg at the opposite end.

Example:

 MyReg SET 0x20 ;set

aside loc 20H for MyReg

 MOVLW 0x66 ;WREG = 66H = 01100110

 MOVWF MyReg ;MyReg = 66H = 01100110

 RRNCF MyReg,F ;now MyReg = 00110011

 RRNCF MyReg,F ;now MyReg = 10011001

 RRNCF MyReg,F ;now MyReg = 11001100

 RRNCF MyReg,F ;now MyReg = 01100110

Example: We can use this instruction to swap the upper and lower nibbles.

 MyReg SET 0x20 ;set aside loc 20H for MyReg

 MOVLW 0x36 ;WREG = 36H = 00110110

 MOVWF MyReg ;MyReg = 36H = 00110110

 RRNCF MyReg,F ;now MyReg = 00011011

 RRNCF MyReg,F ;now MyReg = 10001101

 RRNCF MyReg,F ;now MyReg = 11000110

 RRNCF MyReg,F ;now MyReg = 01100011 = 63H

SETF Set fileReg

Function: Set

Syntax: SETF f, a

This instruction sets the entire byte in fileReg to HIGH. All bits of the register are set to 1.

Examples:

 SETF MyReg ;MyReg = 11111111

 SETF TRISB ;TRISB = FFH,(makes PORTB input)

 SETF PORTC ;PORTC = 1111 1111

Notice that in this instruction, the result can be placed in fileReg only and there is no option for

WREG to be used as the destination for the result.

SLEEP Enter Sleep mode

Function: Put the CPU into sleep mode

Syntax: SLEEP

This instruction stops the oscillator and puts the CPU into sleep mode. It also resets the Watchdog

Timer (WDT). The WDT is used mainly with the SLEEP instruction. Upon execution of the

SLEEP instruction, the entire microcontroller goes into sleep mode by shutting down the main oscillator

and by stopping the Program Counter from fetching the next instruction after SLEEP. There are two ways

to get out of sleep mode: (a) an external event via hardware interrupt, (b) the internal WDT interrupt. Upon

wake-up from a WDT interrupt, the microcontroller resumes operation by executing the next instruction

after SLEEP.

Check the Microchip Corp. website for application notes on WDT.

SUBFWB Subtract fileReg from WREG with borrow

Function: WREG – fileReg – #borrow ;#borrow is inverted carry

Syntax: SUBFWB f, d, a

This subtracts fileReg and the Carry (borrow) flag from WREG and puts the result in WREG (d =

0) or fileReg (d = 1). The steps for subtraction performed by the internal hardware of the CPU are as follows:

1. Take the 2's complement of the fileReg byte.

2. Add this to register WREG.

3. Add the inverted Carry (borrow) flag to the result.

4. Ignore the Carry.

5. Examine the N (negative) flag for positive or negative result.

Example:

 MyReg SET 0x20 ;set aside loc 0x20 for MyReg

BSF STATUS,C ;make Carry = 1

 MOVLW 0x45 ;WREG 45H

 MOVWF MyReg ;MYReg = 45H

 MOVLW 0x23

 SUBWF MyReg ;WREG = 45H - 23H - 0 = 22H

 45H 0100 0101 0100 0101

 -23H 0010 0011 2’s comp + 1101 1101

 Inverted carry + 0

 ------- -----------------

 +22H 0010 0010

Because D7 (the N flag) is 0, the result is positive.

This instruction sets the negative flag according to the following:

 N

 WREG > (fileReg + #C) 0 the result is positive

 WREG = (fileReg + #C) 0 the result is 0

 WREG < (fileReg + #C) 1 the result is negative and in 2's comp

SUBLW Subtract WREG from Literal value

Function: Subtract WREG from literal value k (WREG = k – WREG)

Syntax: SUBLW k

This subtracts the WREG value from the literal value k and puts the result in WREG. The steps

for subtraction performed by the internal hardware of the CPU are as follows:

1. Take the 2's complement of the WREG value.

2. Add it to literal value k.

3. Ignore the Carry.

4. Examine the N (negative) flag for positive or negative result.

 MOVLW 0x23 ;WREG 23H

 SUBLW 0x45 ;WREG = 45H - 23H = 22H

 45H 0100 0101 0100 0101

 -23H 0010 0011 2’s comp +1101 1101

 ------- ------------------

 +22H 0010 0010

Because D7 (the N flag) is 0, the result is positive.

This instruction sets the negative flag according to the following:

 N

Literal value k > WREG 0 the result is positive

Literal value k = WREG 0 the result is 0

Literal value < WREG 1 the result is negative and in 2's comp

Example:

 MOVLW 0x98 ;WREG 98H

 SUBLW 0x66 ;WREG = 66H - 98H = CEH

 66H 0110 0110 0110 0110

 -98H 1001 1000 2’s comp +0110 1000

 ------ ----------------

 CEH 1100 1110

Because D7 (the N flag) is 1, the result is negative and in 2’s comp.

SUBWF Subtract WREG from fileReg

Function: Subtract WREG from fileReg (Dest = fileReg – WREG)

Syntax: SUBWF f, d, a

This subtracts the WREG value from the fileReg value and puts the result in either WREG (d = 0)

or fileReg (d = 1). The steps for subtraction performed by the internal hardware of the CPU are as follows:

1. Take the 2's complement of the WREG byte.

2. Add this to the fileReg register.

3. Ignore the carry.

4. Examine the N (negative) flag for positive or negative result.

Example:

 MyReg SET 0x20 ;set aside loc 0x20 for MyReg

MOVLW 0x45 ;WREG 45H

 MOVWF MyReg ;MYReg = 45H

 MOVLW 0x23 ;WREG = 23H

 SUBWF MyReg,F ;MyReg = 45H - 23H = 22H

 45H 0100 0101 0100 0101

 -23H 0010 0011 2’s comp +1101 1101

 ------- ------------------

 +22H 0010 0010

 Because D7 (the N flag) is 0, the result is positive.

This instruction sets the negative flag according to the following:

 N

 fileReg > WREG 0 the result is positive

 fileReg = WREG 0 the result is 0

 fileReg < WREG 1 the result is negative and in 2's comp

SUBWFB Subtract WREG from fileReg with borrow

Function: Dest = fileReg – WREG – #borrow ;#borrow is inverted carry

Syntax: SUBWFB f, d, a

This subtracts the WREG value and the inverted borrow (carry) flag from the fileReg value and

puts the result in WREG (if d = 0), or fileReg (if d = 1). The steps for subtraction performed by the internal

hardware of the CPU are as follows:

1. Take the 2's complement of WREG.

2. Add this to fileReg.

3. Add the inverted Carry flag to the result.

4. Ignore the carry.

5. Examine the N (negative) flag for positive or negative result.

Example:

 MyReg SET 0x20 ;set aside loc 0x20 for MyReg

 BSF STATUS,C ;C = 1

 MOVLW 0x45 ;WREG 45H

 MOVWF MyReg ;MYReg = 45H

 MOVLW 0x23 ;WREG = 23H

 SUBWFB MyReg,F ;MyReg = 45H - 23H - 0 = 22H

 45H 0100 0101 0100 0101

 -23H 0010 0011 2’s comp +1101 1101

 Inverted carry + 0

 ----- ----------------

 +22H 0010 0010

 Because D7 (the N flag) is 0, the result is positive.

This instruction sets the negative flag according to the following:

 N

 fileReg > (WREG + #C) 0 the result is positive

 fileReg = (WREG + #C) 0 the result is 0

 fileReg < (WREG + #C) 1 the result is negative and in 2's comp

SWAPF Swap Nibbles in fileReg

Function: Swap nibbles within fileReg

Syntax: SAWPF f, d, a

The SWAPF instruction interchanges the lower nibble (D0–D3) with the upper nibble (D4–D7)

inside fileReg. The result is placed in WREG (d = 0) or fileReg (d = 1).

Example:

 MyReg SET 0X20 ;set aside loc 20H for MyReg

 MOVLW 0x59H ;W = 59H (0101 1001 in binary)

 MOVWF MyReg ;MyReg = 59H (0101 1001)

 SWAPF MyReg,F ;MyReg = 95H (1001 0101)

TBLRD Table Read

Function: Read a byte from ROM to the TABLAT register

Syntax: TBLRD *

 TBLRD *+

 TBLRD *-

 TBLRD +*

This instruction moves (copies) a byte of data located in program (code) ROM into the TableLatch

(TABLAT) register. This allows us to put strings of data, such as look-up table elements, in the code space

and read them into the CPU. The address of the desired byte in the program space (on-chip ROM) is held

by the TBLPTR register. Table A-6 shows the auto-increment feature of the TBLRD instruction.

Instruction Function

TBLRD* Table Read After read, TBLPTR stays the same

TBLRD*+ Table Read with post-increment (Read and increment TBLPTR)

TBLRD*- Table Read with post-decrement (Read and decrement TBLPTR)

TBLRD+* Table Read with pre-increment (increment TBLPTR and read)

Note: A byte of data is read into the TABLAT register from code space pointed to by TBLPTR.

Table A-6: PIC18 Table Read Instructions

Example: Assume that an ASCII character string is stored in the on-chip ROM program memory

starting at address 500H. Write a program to bring each character into the CPU and send it to PORTB.

 ORG 0000H ;burn into ROM starting at 0

 MOVLW LOW(MESSAGE) ;WREG = 00 low-byte addr.

 MOVWF TBLPTRL ;look-up table low-byte addr

 MOVLW HIGH(MESSAGE) ;WREG = 05 = high-byte addr

 MOVWF TBLPTRH ;look-up table high-byte addr

 CLRF TBLPTRU ;clear upper 5 bits

B8 TBLRD*+ ;read the table,then increment TBLPTR

 MOVF TABLAT,W ;copy to WREG (Z = 1 if null)

 BZ EXIT ;exit if end of string

 MOVWF PORTB ;copy WREG to PORTB

 BRA B8

EXIT GOTO EXIT

;---------------------message

 ORG 0x500 ;data burned starting at 0x500

 ORG 0x500

MESSAGE DB "The earth is but one country and "

 DB "mankind its citizens","Baha'u'llah",0

 END

In the program above, the TBLPTR holds the address of the desired byte. After the execution of

the TBLRD*+ instruction, register TABLAT has the character. Notice that TBLPTR is incremented

automatically to point to the next character in the MRESSAGE table.

TBLWT Table Write

Function: Write to Flash a block of data

Syntax: TBLWT*

 TBLWT*+

 TBLWT*-

 TBLWT+*

This instruction writes a block of data to the program (code) space assuming that the on-chip

program ROM is of Flash type. The address of the desired location in Flash ROM is held by the TBLPTR

register. The process of writing to Flash ROM using the TBLWT instruction is discussed in Section 14.3

of Chapter 14.

TSTFSZ Test fileReg, Skip if Zero

Function: Test fileReg for zero value and skip if it is zero

Syntax: TSTFSZ f, a

This instruction tests the entire contents of fileReg for value zero and skips the next instruction if

fileReg has zero in it.

Example: Test PORTB for zero continuously.

 SETF TRISB ;make PORTB an input

 CLRF TRISD ;make PORTD an output

 BACK TSTFSZ PORTB

 BRA BACK

 MOVFF PORTB,PORTD

Example: Toggle PORTB 250 times.

 COUNTER SET 0x40 ;loc 40H for COUNTER

 SETF TRISB ;PORTB as output

 MOVLW D'250' ;WREG = 250

 MOVWF COUNTER ;COUNTER = 250

 MOVLW 0x55 ;WREG = 55H

 MOVWF PORTB

 BACK COMF PORTB,F ;toggle PORTB

 DECF COUNTER,F ;decrement COUNTER

 TSTFSZ COUNTER ;test counter for 0

 BRA BACK ;keep doing it

XORLW Ex-Or Literal with WREG

Function: Logical exclusive-OR Literal k and WREG

Syntax: XORLW k

 This performs a logical exclusive-OR on the Literal value and

WREG operands, bit by bit, storing the result in WREG.

Example:

 MOVLW 0x39 ;WREG = 39H

 XORLW 0x09 ;WREG = 39H ORed with 09

 ;now, WREG = 30H

 39H 0011 1001

 09H 0000 1001

 30 0011 0000

Example:

 MOVLW 0x32 ;WREG = 32H

 XORLW 0x50 ;(now, WREG = 62H)

 32H 0011 0010

 50H 0101 0000

 62H 0110 0010

XORWF Ex-Or WREG with fileReg

Function: Logical exclusive-OR fileReg and WREG

Syntax: XORWF f, d, a

A B A XOR

B

0 0 0

0 1 1

1 0 1

1 1 0

This performs a logical exclusive-OR on the operands, bit by bit, storing the result in the

destination. The destination can be WREG (d = 0), or fileReg (d = 1).

Example:

MyReg SET 0x20 ;set aside loc 20h for MyReg

 MOVLW 0x39 ;WREG = 39H

 MOVWF MyReg ;MyReg = 39H

 MOVLW 0x09 ;WREG = 09H

 XORWF MyReg,F ;MyReg = 39H ORed with 09

 ;MyReg = 30H

 39H 0011 1001

 09H 0000 1001

 30 0011 0000

Example:

 MyReg SET 0x15 ;set aside loc 15 for MyReg

 MOVLW 0x32 ;WREG = 32H

 MOVWF MyReg ;MyReg = 32H

 MOVLW 0x50 ;WREG = 50H

 XORWF MyReg,F ;now W = 62H

 32H 0011 0010

 50H 0101 0000

 62H 0110 0010.

 We can place the result in WREG.

 Example:

 MyReg SET 0x15 ;set aside loc 15 for MyReg

 MOVLW 0x44 ;WREG = 44H

 MOVWF MyReg ;MyReg = 44H

 MOVLW 0x67 ;WREG = 67H

 XORWF MyReg ;now W = 23H, and MyReg = 44H

 44H 0100 0100

 67H 0110 0111

 23H 0010 0011

