
1

OBJECTIVES

Upon completion of this chapter, you will be able to:

>> >> Convert any number from base 2, base 10, or base 16 to any of the

other two bases

>> >> Describe the logical operations AND, OR, NOT, XOR, NAND, and NOR

>> >> Use logic gates to diagram simple circuits

>> >> Explain the difference between a bit, a nibble, a byte, and a word

>> >> Give precise mathematical definitions of the terms kilobyte, megabyte,
gigabyte, and terabyte

>> >> Describe the purpose of the major components of a computer system

>> >> Contrast and compare various types of semiconductor memories

in terms of their capacity, organization, and access time

>> >> Describe the relationship between the number of memory locations

on a chip, the number of data pins, and the chip's memory capacity

>> >> Contrast and compare PROM, EPROM, UV-EPROM, EEPROM,

Flash memory EPROM, and mask ROM memories

>> >> Contrast and compare SRAM, NV-RAM, and DRAM memories

>> >> List the steps a CPU follows in memory address decoding

>> >> List the three types of buses found in computers and describe the

purpose of each type of bus

>> >> Describe the role of the CPU in computer systems

>> >> List the major components of the CPU and describe the purpose of each

>> >> Understand the RISC and Harvard architectures

CHAPTER 0

INTRODUCTION

TO COMPUTING

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 2

rTo understand the software and hardware of a microcontroller-based sys-

tem, one must first master some very basic concepts underlying computer archi-

tecture. In this chapter (which in the tradition of digital computers is called

Chapter 0), the fundamentals of numbering and coding systems are presented in

Section 0.1. In Section 0.2, an overview of logic gates is given. The semiconduc-

tor memory and memory interfacing are discussed in Section 0.3. In Section 0.4,

CPUs and Harvard and von Neumann architectures are discussed. Finally, in the

last section we give a brief history of RISC architecture. Although some readers

may have an adequate background in many of the topics of this chapter, it is rec-

ommended that the material be reviewed, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimal) arithmetic, computers use

the base 2 (binary) system. In this section we explain how to convert from the dec-

imal system to the binary system, and vice versa. The convenient representation of

binary numbers, called hexadecimal, also is covered. Finally, the binary format of

the alphanumeric code, called ASCII, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system

is the fact that human beings have 10 fingers, there is absolutely no speculation

about the reason behind the use of the binary system in computers. The binary sys-

tem is used in computers because 1 and 0 represent the two voltage levels of on

and off. Whereas in base 10 there are 10 distinct symbols, 0, 1, 2, ..., 9, in base 2

there are only two, 0 and 1, with which to generate numbers. Base 10 contains dig-

its 0 through 9; binary contains digits 0 and 1 only. These two binary digits, 0 and

1, are commonly referred to as bits.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal

number by 2 repeatedly, keeping track of the remainders. This process continues

until the quotient becomes zero. The remainders are then written in reverse order

to obtain the binary number. This is demonstrated in Example 0-1.

Convert 2510 to binary.

Solution:

Quotient Remainder
25/2 = 12 1 LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0
3/2 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 2510 = 110012.

Example 0-1

Converting from binary to decimal

To convert from binary to decimal, it is

important to understand the concept of weight

associated with each digit position. First, as an

analogy, recall the weight of numbers in the base

10 system, as shown in the diagram. By the same

token, each digit position of a number in base 2

has a weight associated with it:

1101012 = Decimal Binary
1 × 20 = 1 × 1 = 1 1
0 × 21 = 0 × 2 = 0 00
1 × 22 = 1 × 4 = 4 100
0 × 23 = 0 × 8 = 0 0000
1 × 24 = 1 × 16 = 16 10000
1 × 25 = 1 × 32 = 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add

them together to get its decimal equivalent, as shown in Example 0-2.

Knowing the weight associated with each binary bit position allows one to

convert a decimal number to binary directly instead of going through the process

of repeated division. This is shown in Example 0-3.

CHAPTER 0: INTRODUCTION TO COMPUTING 3

Convert 110012 to decimal.

Solution:

Weight: 16 8 4 2 1

Digits: 1 1 0 0 1

Sum: 16 + 8 + 0 + 0 + 1 = 2510

Example 0-2

Use the concept of weight to convert 3910 to binary.

Solution:

Weight: 32 16 8 4 2 1

1 0 0 1 1 1

32 + 0 + 0 + 4 + 2 + 1 = 39

Therefore, 3910 = 1001112.

Example 0-3

74068310 =

3 × 100 = 3
8 × 101 = 80
6 × 102 = 600
0 × 103 = 0000
4 × 104 = 40000
7 × 105 = 700000

740683

Hexadecimal system

Base 16, or the hexadecimal system as it is called in

computer literature, is used as a convenient representation

of binary numbers. For example, it is much easier for a

human being to represent a string of 0s and 1s such as

100010010110 as its hexadecimal equivalent of 896H. The

binary system has 2 digits, 0 and 1. The base 10 system has

10 digits, 0 through 9. The hexadecimal (base 16) system

has 16 digits. In base 16, the first 10 digits, 0 to 9, are the

same as in decimal, and for the remaining six digits, the let-

ters A, B, C, D, E, and F are used. Table 0-1 shows the

equivalent binary, decimal, and hexadecimal representa-

tions for 0 to 15.

Converting between binary and hex

To represent a binary number as its equivalent hexa-

decimal number, start from the right and group 4 bits at a

time, replacing each 4-bit binary number with its hex equiv-

alent shown in Table 0-1. To convert from hex to binary,

each hex digit is replaced with its 4-bit binary equivalent.

See Examples 0-4 and 0-5.

Converting from decimal to hex

Converting from decimal to hex could be approached in two ways:

1. Convert to binary first and then convert to hex. Example 0-6 shows this

method of converting decimal to hex.

2. Convert directly from decimal to hex by repeated division, keeping track of the

remainders. Experimenting with this method is left to the reader.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 4

Table 0-1: Base 16

Number System

Decimal Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Convert hex 29B to binary.

Solution:

2 9 B

29B = 0010 1001 1011
Dropping the leading zeros gives 1010011011.

Example 0-5

Represent binary 100111110101 in hex.

Solution:

First the number is grouped into sets of 4 bits: 1001 1111 0101.

Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101

9 F 5

Therefore, 1001111101012 = 9F5 hexadecimal.

Example 0-4

Converting from hex to decimal

Conversion from hex to decimal can also be approached in two ways:

1. Convert from hex to binary and then to decimal. Example 0-7 demonstrates

this method of converting from hex to decimal.

2. Convert directly from hex to decimal by summing the weight of all digits.

CHAPTER 0: INTRODUCTION TO COMPUTING 5

(a) Convert 4510 to hex.

32 16 8 4 2 1 First, convert to binary.

1 0 1 1 0 1 32 + 8 + 4 + 1 = 45

4510 = 0010 11012 = 2D hex

(b) Convert 62910 to hex.

512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 0 1 0 1

62910 = (512 + 64 + 32 + 16 + 4 + 1) = 0010 0111 01012 = 275 hex

(c) Convert 171410 to hex.

1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0

171410 = (1024 + 512 + 128 + 32 + 16 + 2) = 0110 1011 00102 = 6B2 hex

Example 0-6

Convert the following hexadecimal numbers to decimal.

(a) 6B216 = 0110 1011 00102

1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0

1024 + 512 + 128 + 32 + 16 + 2 = 171410

(b) 9F2D16 = 1001 1111 0010 11012

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1

32768 + 4096 + 2048 + 1024 + 512 + 256 + 32 + 8 + 4 + 1 = 40,74910

Example 0-7

Counting in bases 10, 2, and 16

To show the relationship between all

three bases, in Table 0-2 we show the sequence

of numbers from 0 to 31 in decimal, along with

the equivalent binary and hex numbers. Notice

in each base that when one more is added to the

highest digit, that digit becomes zero and a 1 is

carried to the next-highest digit position. For

example, in decimal, 9 + 1 = 0 with a carry to the

next-highest position. In binary, 1 + 1 = 0 with a

carry; similarly, in hex, F + 1 = 0 with a carry.

Addition of binary and hex numbers

The addition of binary numbers is a

very straightforward process. Table 0-3 shows

the addition of two bits. The discussion of sub-

traction of binary numbers is bypassed since all

computers

use the

a d d i t i o n

process to

implement

s u b t r a c -

t i o n .

A l though

computers have adder circuitry, there is no sep-

arate circuitry for subtractors. Instead, adders

are used in conjunction with 2’s complement
circuitry to perform subtraction. In other words,

to implement “x – y”, the computer takes the 2’s

complement of y and adds it to x. The concept

of 2’s complement is reviewed next. Example

0-8 shows the addition of binary numbers.

2’s complement

To get the 2’s complement of a binary number, invert all the bits and then

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 6

Table 0-2: Counting in Bases

Decimal Binary Hex

0 00000 0

1 00001 1

2 00010 2

3 00011 3

4 00100 4

5 00101 5

6 00110 6

7 00111 7

8 01000 8

9 01001 9

10 01010 A

11 01011 B

12 01100 C

13 01101 D

14 01110 E

15 01111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

21 10101 15

22 10110 16

23 10111 17

24 11000 18

25 11001 19

26 11010 1A

27 11011 1B

28 11100 1C

29 11101 1D

30 11110 1E

31 11111 1F

Table 0-3: Binary Addition

A + B Carry Sum

0 + 0 0 0

0 + 1 0 1

1 + 0 0 1

1 + 1 1 0

Add the following binary numbers. Check against their decimal equivalents.

Solution:

Binary Decimal
1101 13

+ 1001 9

10110 22

Example 0-8

add 1 to the result. Inverting the bits is simply a matter of changing all 0s to 1s and

1s to 0s. This is called the 1’s complement. See Example 0-9.

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is

often necessary to add or subtract hex numbers. Mastery of these techniques is

essential. Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with the

least significant digits, the digits are added together. If the result is less than 16,

write that digit as the sum for that position. If it is greater than 16, subtract 16 from

it to get the digit and carry 1 to the next digit. The best way to explain this is by

example, as shown in Example 0-10.

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit is greater than the first,

borrow 16 from the preceding digit. See Example 0-11.

CHAPTER 0: INTRODUCTION TO COMPUTING 7

Take the 2’s complement of 10011101.

Solution:

10011101 binary number

01100010 1’s complement

+ 1

01100011 2’s complement

Example 0-9

Perform hex addition: 23D9 + 94BE.

Solution:

23D9 LSD: 9 + 14 = 23 23 – 16 = 7 with a carry

+ 94BE 1 + 13 + 11 = 25 25 – 16 = 9 with a carry

B897 1 + 3 + 4 = 8

MSD: 2 + 9 = B

Example 0-10

Perform hex subtraction: 59F – 2B8.

Solution:

59F LSD: 8 from 15 = 7

– 2B8 11 from 25 (9 + 16) = 14 (E)

2E7 2 from 4 (5 – 1) = 2

Example 0-11

ASCII code

The discussion so far has

revolved around the representation of

number systems. Because all informa-

tion in the computer must be represent-

ed by 0s and 1s, binary patterns must be

assigned to letters and other characters.

In the 1960s a standard representation

called ASCII (American Standard Code

for Information Interchange) was estab-

lished. The ASCII (pronounced “ask-E”) code assigns binary patterns for numbers

0 to 9, all the letters of the English alphabet, both uppercase (capital) and lower-

case, and many control codes and punctuation marks. The great advantage of this

system is that it is used by most computers, so that information can be shared

among computers. The ASCII system uses a total of 7 bits to represent each code.

For example, 100 0001 is assigned to the uppercase letter “A” and 110 0001 is for

the lowercase “a”. Often, a zero is placed in the most-significant bit position to

make it an 8-bit code. Figure 0-1 shows selected ASCII codes. A complete list of

ASCII codes is given in Appendix F. The use of ASCII is not only standard for

keyboards used in the United States and many other countries but also provides a

standard for printing and displaying characters by output devices such as printers

and monitors.

Notice that the pattern of ASCII codes was designed to allow for easy

manipulation of ASCII data. For example, digits 0 through 9 are represented by

ASCII codes 30 through 39. This enables a program to easily convert ASCII to

decimal by masking off the “3” in the upper nibble. Also notice that there is a rela-

tionship between the uppercase and lowercase letters. The uppercase letters are

represented by ASCII codes 41 through 5A while lowercase letters are represent-

ed by codes 61 through 7A. Looking at the binary code, the only bit that is differ-

ent between the uppercase “A” and lowercase “a” is bit 5. Therefore, conversion

between uppercase and lowercase is as simple as changing bit 5 of the ASCII code.

Review Questions

1. Why do computers use the binary number system instead of the decimal sys-

tem?

2. Convert 3410 to binary and hex.

3. Convert 1101012 to hex and decimal.

4. Perform binary addition: 101100 + 101.

5. Convert 1011002 to its 2’s complement representation.

6. Add 36BH + F6H.

7. Subtract 36BH – F6H.

8. Write “80x86 CPUs” in its ASCII code (in hex form).

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 8

Hex Symbol Hex Symbol
41 A 61 a

42 B 62 b

43 C 63 c

44 D 64 d

...

59 Y 79 y

5A Z 7A z

Figure 0-1. Selected ASCII Codes

SECTION 0.2: DIGITAL PRIMER

This section gives an overview of digital logic and design. First, we cover

binary logic operations, then we show gates that perform these functions. Next,

logic gates are put together to form simple digital circuits. Finally, we cover some

logic devices commonly found in microcontroller interfacing.

Binary logic

As mentioned earlier, computers use the

binary number system because the two voltage lev-

els can be represented as the two digits 0 and 1.

Signals in digital electronics have two distinct volt-

age levels. For example, a system may define 0 V as

logic 0 and +5 V as logic 1. Figure 0-2 shows this

system with the built-in tolerances for variations in

the voltage. A valid digital signal in this example

should be within either of the two shaded areas.

Logic gates

Binary logic gates are simple circuits that

take one or more input signals and send out one out-

put signal. Several of these gates are defined below.

AND gate
The AND gate takes two or more inputs and

performs a logic AND on them. See the truth table

and diagram of the AND gate. Notice that if both

inputs to the AND gate are 1, the output will be 1.

Any other combination of inputs will give a 0 output.

The example shows two inputs, x and y. Multiple

outputs are also possible for logic gates. In the case

of AND, if all inputs are 1, the output is 1. If any

input is 0, the output is 0.

OR gate
The OR logic function will output a 1 if one

or more inputs is 1. If all inputs are 0, then and only

then will the output be 0.

Tri-state buffer
A buffer gate does not change the logic level

of the input. It is used to isolate or amplify the sig-

nal.

CHAPTER 0: INTRODUCTION TO COMPUTING 9

Logical AND Function

Inputs Output

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

X

Y
X AND Y

Logical OR Function

Inputs Output

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

X

Y
X OR Y

Buffer

X

Control

Y

Figure 0-2. Binary Signals

5

4

3

2

1

0
Logic 0

Logic 1

Inverter
The inverter, also called NOT, outputs the

value opposite to that input to the gate. That is, a 1

input will give a 0 output, while a 0 input will give a

1 output.

XOR gate
The XOR gate performs an exclusive-OR

operation on the inputs. Exclusive-OR produces a 1

output if one (but only one) input is 1. If both

operands are 0, the output is 0. Likewise, if both

operands are 1, the output is also 0. Notice from the

XOR truth table, that whenever the two inputs are

the same, the output is 0. This function can be used

to compare two bits to see if they are the same.

NAND and NOR gates
The NAND gate functions like an AND gate

with an inverter on the output. It produces a 0 output

when all inputs are 1; otherwise, it produces a 1 out-

put. The NOR gate functions like an OR gate with an

inverter on the output. It produces a 1 if all inputs are

0; otherwise, it produces a 0. NAND and NOR gates

are used extensively in digital design because they

are easy and inexpensive to fabricate. Any circuit

that can be designed with AND, OR, XOR, and

INVERTER gates can be implemented using only

NAND and NOR gates. A simple example of this is

given below. Notice in NAND, that if any input is 0,

the output is 1. Notice in NOR, that if any input is 1,

the output is 0.

Logic design using gates

Next we will show a simple logic design to

add two binary digits. If we add two binary digits

there are four possible outcomes:

Carry Sum
0 + 0 = 0 0

0 + 1 = 0 1

1 + 0 = 0 1

1 + 1 = 1 0

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 10

Logical Inverter

Input Output

X NOT X

0 1

1 0

X NOT X

Logical NAND Function

Inputs Output

X Y X NAND Y

0 0 1

0 1 1

1 0 1

1 1 0

X

Y
X NAND Y

Logical NOR Function

Inputs Output

X Y X NOR Y

0 0 1

0 1 0

1 0 0

1 1 0

X

Y
X NOR Y

Logical XOR Function

Inputs Output

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

X

Y
X XOR Y

Notice that when we add 1 + 1 we get 0 with a carry to the next higher

place. We will need to determine the sum and the carry for this design. Notice that

the sum column above matches the output for the XOR function, and that the carry

column matches the output for the AND function. Figure 0-3(a) shows a simple

adder implemented with XOR and AND gates. Figure 0-3(b) shows the same logic

circuit implemented with AND and OR gates and inverters.

Figure 0-4 shows a block dia-

gram of a half-adder. Two half-adders

can be combined to form an adder that

can add three input digits. This is called

a full-adder. Figure 0-5 shows the logic

diagram of a full-adder, along with a

block diagram that masks the details of

the circuit. Figure 0-6 shows a 3-bit

adder using three full-adders.

CHAPTER 0: INTRODUCTION TO COMPUTING 11

Sum

Sum

Final Sum

C out

CarryHalf-

Adder

Half-

Adder

X

Y

Carry

Final

Carry

C in

Figure 0-5. Full-Adder Built from a Half-Adder

X

Y

C in

X

Y
Sum

Carry

X

Y

X

Y

X

Y

Sum

Carry

(a) Half-Adder Using XOR and AND (b) Half-Adder Using AND, OR, Inverters

Figure 0-3. Two Implementations of a Half-Adder

Figure 0-4. Block Diagram of a Half-Adder

Half-

Adder

X Sum

Carry

out

Y

Decoders

Another example of the application

of logic gates is the decoder. Decoders are

widely used for address decoding in com-

puter design. Figure 0-7 shows decoders

for 9 (1001 binary) and 5 (0101) using

inverters and AND gates.

Flip-flops

A widely used component in digital

systems is the flip-flop. Frequently, flip-

flops are used to store data. Figure 0-8

shows the logic diagram, block diagram,

and truth table for a flip-flop.

The D flip-flop is widely used to

latch data. Notice from the truth table that

a D-FF grabs the data at the input as the

clock is activated. A D-FF holds the data as

long as the power is on.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 12

Figure 0-6. 3-Bit Adder Using Three Full-

Adders

Full-

Adder

Full-

Adder

Full-

Adder

X0 S0

S1

S2

S3

Carry

Carry

Carry

Y0

X1

Y1

X2

Y2

LSB LSB

(a) Address decoder for 9 (binary 1001)

The output of the AND gate will be 1

if and only if the input is binary 1001.

(b) Address decoder for 5 (binary 0101)

The output of the AND gate will be 1

if and only if the input is binary 0101.

Figure 0-7. Address Decoders

Figure 0-8. D Flip-Flops

Clk D Q

No x no change

0 0

1 1

x = don’t care

D Q

Clk

Q

D

Q

Q

Clk

(a) Circuit diagram (b) Block diagram (c) Truth table

Review Questions

1. The logical operation _____ gives a 1 output when all inputs are 1.

2. The logical operation _____ gives a 1 output when one or more of its inputs is

1.

3. The logical operation _____ is often used to compare two inputs to determine

whether they have the same value.

4. A _____ gate does not change the logic level of the input.

5. Name a common use for flip-flops.

6. An address ______ is used to identify a predetermined binary address.

SECTION 0.3: SEMICONDUCTOR MEMORY

In this section we discuss various types of semiconductor memories and

their characteristics such as capacity, organization, and access time. We will also

show how the memory is connected to CPU. Before we embark on the subject of

memory, it will be helpful to give an overview of computer organization and

review some widely used terminology in computer literature.

Some important terminology

Recall from the discussion above

that a bit is a binary digit that can have the

value 0 or 1. A byte is defined as 8 bits. A

nibble is half a byte, or 4 bits. A word is

two bytes, or 16 bits. The display is intended to show the relative size of these

units. Of course, they could all be composed of any combination of zeros and ones.

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often

used to represent kilobytes. A megabyte, or meg as some call it, is 220 bytes. That

is a little over 1 million bytes; it is exactly 1,048,576 bytes. Moving rapidly up the

scale in size, a gigabyte is 230 bytes (over 1 billion), and a terabyte is 240 bytes

(over 1 trillion). As an example of how some of these terms are used, suppose that

a given computer has 16 megabytes of memory. That would be 16 × 220, or 24 ×
220, which is 224. Therefore 16 megabytes is 224 bytes.

Two types of memory commonly used in microcomputers are RAM, which

stands for “random access memory” (sometimes called read/write memory), and

ROM, which stands for “read-only memory.” RAM is used by the computer for

temporary storage of programs that it is running. That data is lost when the com-

puter is turned off. For this reason, RAM is sometimes called volatile memory.

ROM contains programs and information essential to operation of the computer.

The information in ROM is permanent, cannot be changed by the user, and is not

lost when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

The internal working of every computer can be broken down into three

parts: CPU (central processing unit), memory, and I/O (input/output) devices.

Figure 0-9 shows a block diagram of the internal organization of a computer.

CHAPTER 0: INTRODUCTION TO COMPUTING 13

Bit 0
Nibble 0000
Byte 0000 0000
Word 0000 0000 0000 0000

The function of the CPU is to execute (process) information stored in memory. The

function of I/O devices such as the keyboard and video monitor is to provide a

means of communicating with the CPU. The CPU is connected to memory and I/O

through strips of wire called a bus. The bus inside a computer allows carrying

information from place to place just as a street allows cars to carry people from

place to place. In every computer there are three types of buses: address bus, data

bus, and control bus.

For a device (memory or I/O) to be recognized by the CPU, it must be

assigned an address. The address assigned to a given device must be unique; no

two devices are allowed to have the same address. The CPU puts the address (in

binary, of course) on the address bus, and the decoding circuitry finds the device.

Then the CPU uses the data bus either to get data from that device or to send data

to it. The control buses are used to provide read or write signals to the device to

indicate if the CPU is asking for information or sending information. Of the three

buses, the address bus and data bus determine the capability of a given CPU.

More about the data bus

Because data buses are used to carry information in and out of a CPU, the

more data buses available, the better the CPU. If one thinks of data buses as high-

way lanes, it is clear that more lanes provide a better pathway between the CPU

and its external devices (such as printers, RAM, ROM, etc.; see Figure 0-9). By

the same token, that increase in the number of lanes increases the cost of construc-

tion. More data buses mean a more expensive CPU and computer. The average

size of data buses in CPUs varies between 8 and 64 bits. Early personal comput-

ers such as Apple 2 used an 8-bit data bus, while supercomputers such as Cray

used a 64-bit data bus. Data buses are bidirectional, because the CPU must use

them either to receive or to send data. The processing power of a computer is relat-

ed to the size of its buses, because an 8-bit bus can send out 1 byte a time, but a

16-bit bus can send out 2 bytes at a time, which is twice as fast.

More about the address bus

Because the address bus is used to identify the devices and memory con-

nected to the CPU, the more address buses available, the larger the number of

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 14

Figure 0-9. Internal Organization of a Computer

CPU

Read/write

RAM ROM Printer Disk Monitor Keyboard

Address Bus

Data Bus

Control Buses (MEMR, MEMW, IORD, and IOWR)

devices that can be addressed. In other words, the number of address buses for a

CPU determines the number of locations with which it can communicate. The

number of locations is always equal to 2x, where x is the number of address lines,

regardless of the size of the data bus. For example, a CPU with 16 address lines

can provide a total of 65,536 (216) or 64K of addressable memory. Each location

can have a maximum of 1 byte of data. This is because all general-purpose micro-

processor CPUs are what is called byte addressable. As another example, the IBM

PC AT uses a CPU with 24 address lines and 16 data lines. Thus, the total acces-

sible memory is 16 megabytes (224 = 16 megabytes). In this example there would

be 224 locations, and because each location is one byte, there would be 16

megabytes of memory. The address bus is a unidirectional bus, which means that

the CPU uses the address bus only to send out addresses. To summarize: The total

number of memory locations addressable by a given CPU is always equal to 2x

where x is the number of address bits, regardless of the size of the data bus.

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored in RAM or

ROM. The function of ROM in computers is to provide information that is fixed

and permanent. This is information such as tables for character patterns to be dis-

played on the video monitor, or programs that are essential to the working of the

computer, such as programs for testing and finding the total amount of RAM

installed on the system, or for displaying information on the video monitor. In con-

trast, RAM stores temporary information that can change with time, such as vari-

ous versions of the operating system and application packages such as word pro-

cessing or tax calculation packages. These programs are loaded from the hard

drive into RAM to be processed by the CPU. The CPU cannot get the information

from the disk directly because the disk is too slow. In other words, the CPU first

seeks the information to be processed from RAM (or ROM). Only if the data is not

there does the CPU seek it from a mass storage device such as a disk, and then it

transfers the information to RAM. For this reason, RAM and ROM are sometimes

referred to as primary memory and disks are called secondary memory. Next, we

discuss various types of semiconductor memories and their characteristics such as

capacity, organization, and access time.

Memory capacity

The number of bits that a semiconductor memory chip can store is called

chip capacity. It can be in units of Kbits (kilobits), Mbits (megabits), and so on.

This must be distinguished from the storage capacity of computer systems. While

the memory capacity of a memory IC chip is always given in bits, the memory

capacity of a computer system is given in bytes. For example, an article in a tech-

nical journal may state that the 128M chip has become popular. In that case, it is

understood, although it is not mentioned, that 128M means 128 megabits since the

article is referring to an IC memory chip. However, if an advertisement states that

a computer comes with 128M memory, it is understood that 128M means 128

megabytes since it is referring to a computer system.

CHAPTER 0: INTRODUCTION TO COMPUTING 15

Memory organization

Memory chips are organized into a number of locations within the IC.

Each location can hold 1 bit, 4 bits, 8 bits, or even 16 bits, depending on how it is

designed internally. The number of bits that each location within the memory chip

can hold is always equal to the number of data pins on the chip. How many loca-

tions exist inside a memory chip? That depends on the number of address pins. The

number of locations within a memory IC always equals 2 to the power of the num-

ber of address pins. Therefore, the total number of bits that a memory chip can

store is equal to the number of locations times the number of data bits per location.

To summarize:

1. A memory chip contains 2x locations, where x is the number of address pins.
2. Each location contains y bits, where y is the number of data pins on the chip.

3. The entire chip will contain 2x × y bits, where x is the number of address pins

and y is the number of data pins on the chip.

Speed

One of the most important characteristics of a

memory chip is the speed at which its data can be

accessed. To access the data, the address is presented to

the address pins, the READ pin is activated, and after a

certain amount of time has elapsed, the data shows up

at the data pins. The shorter this elapsed time, the bet-

ter, and consequently, the more expensive the memory

chip. The speed of the memory chip is commonly

referred to as its access time. The access time of mem-

ory chips varies from a few nanoseconds to hundreds

of nanoseconds, depending on the IC technology used

in the design and fabrication process.

The three important memory characteristics of

capacity, organization, and access time will be

explored extensively in this chapter. Table 0-4 serves as

a reference for the calculation of memory organization.

Examples 0-12 and 0-13 demonstrate these concepts.

ROM (read-only memory)

ROM is a type of memory that does not lose its

contents when the power is turned off. For this reason, ROM is also called non-
volatile memory. There are different types of read-only memory, such as PROM,

EPROM, EEPROM, Flash EPROM, and mask ROM. Each is explained next.

PROM (programmable ROM) and OTP

PROM refers to the kind of ROM that the user can burn information into.

In other words, PROM is a user-programmable memory. For every bit of the

PROM, there exists a fuse. PROM is programmed by blowing the fuses. If the

information burned into PROM is wrong, that PROM must be discarded since its

internal fuses are blown permanently. For this reason, PROM is also referred to as

16

Table 0-4: Powers of 2

x 2x

10 1K

11 2K

12 4K

13 8K

14 16K

15 32K

16 64K

17 128K

18 256K

19 512K

20 1M

21 2M

22 4M

23 8M

24 16M

25 32M

26 64M

27 128M

OTP (one-time programmable). Programming ROM, also called burning ROM,

requires special equipment called a ROM burner or ROM programmer.

EPROM (erasable programmable ROM) and UV-EPROM

EPROM was invented to allow making changes in the contents of PROM

after it is burned. In EPROM, one can program the memory chip and erase it thou-

sands of times. This is especially necessary during development of the prototype

of a microprocessor-based project. A widely used EPROM is called UV-EPROM,

where UV stands for ultraviolet. The only problem with UV-EPROM is that eras-

ing its contents can take up to 20 minutes. All UV-EPROM chips have a window

through which the programmer can shine ultraviolet (UV) radiation to erase the

chip’s contents. For this reason, EPROM is also referred to as UV-erasable

EPROM or simply UV-EPROM. Figure 0-10 shows the pins for UV-EPROM

chips.

To program a UV-EPROM chip, the following steps must be taken:

1. Its contents must be erased. To erase a chip, remove it from its socket on the

system board and place it in EPROM erasure equipment to expose it to UV

radiation for 15–20 minutes.

2. Program the chip. To program a UV-EPROM chip, place it in the ROM burn-

er (programmer). To burn code or data into EPROM, the ROM burner uses

12.5 volts or higher, depending on the EPROM type. This voltage is referred

CHAPTER 0: INTRODUCTION TO COMPUTING 17

A 512K memory chip has 8 pins for data. Find:

(a) the organization, and (b) the number of address pins for this memory chip.

Solution:

(a) A memory chip with 8 data pins means that each location within the chip can hold

8 bits of data. To find the number of locations within this memory chip, divide the

capacity by the number of data pins. 512K/8 = 64K; therefore, the organization for

this memory chip is 64K × 8.

(b) The chip has 16 address lines since 216 = 64K.

Example 0-13

A given memory chip has 12 address pins and 4 data pins. Find:

(a) the organization, and (b) the capacity.

Solution:

(a) This memory chip has 4,096 locations (212 = 4,096), and each location can hold 4

bits of data. This gives an organization of 4,096 × 4, often represented as 4K × 4.

(b) The capacity is equal to 16K bits since there is a total of 4K locations and each loca-

tion can hold 4 bits of data.

Example 0-12

to as VPP in the UV-EPROM data sheet.

3. Place the chip back into its socket on the system board.

As can be seen from the above steps, not only is there an EPROM program-

mer (burner), but there is also separate EPROM erasure equipment. The main

problem, and indeed the major disadvantage of UV-EPROM, is that it cannot be

erased and programmed while it is in the system board. To provide a solution to

this problem, EEPROM was invented.

Notice the patterns of the IC numbers in Table 0-5. For example, part num-

ber 27128-25 refers to UV-EPROM that has a capacity of 128K bits and access

time of 250 nanoseconds. The capacity of the memory chip is indicated in the part

number and the access time is given with a zero dropped. See Example 0-14. In

part numbers, C refers to CMOS technology. Notice that 27XX always refers to

UV-EPROM chips. For a comprehensive list of available memory chips see the

JAMECO (jameco.com) or JDR (jdr.com) catalogs.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 18

For ROM chip 27128, find the number of data and address pins.

Solution:

The 27128 has a capacity of 128K bits. It has 16K × 8 organization (all ROMs have 8

data pins), which indicates that there are 8 pins for data and 14 pins for address

(214 = 16K).

Example 0-14

Vcc

PGM

N.C.

A8

A9

A11

OE

A10

CE

O7

O6

O5

O4

O3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

Vpp

A12

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND

Vcc

A8

A9

Vpp

OE

A10

CE

O7

O6

O5

O4

O3

Vcc

A14

A13

A8

A9

Vpp

OE

A10

CE

O7

O6

O5

O4

O3

Vcc

PGM

A13

A8

A9

Vpp

OE

A10

CE

O7

O6

O5

O4

O3

Vcc

A8

A9

A11

OE/Vpp

A10

CE

O7

O6

O5

O4

O3

2
7
1
6

2
7
1
2
8

2
7
2
5
6

2
7
3
2
A

Vpp

A12

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND

Vpp

A12

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND

2
7
2
5
6

2
7
3
2
A

2
7
1
6

2
7
1
2
8

2764

Figure 0-10. Pin Configurations for 27xx ROM Family

EEPROM (electrically erasable programmable ROM)

EEPROM has several advantages over EPROM, such as the fact that its

method of erasure is electrical and therefore instant, as opposed to the 20-minute

erasure time required for UV-EPROM. In addition, in EEPROM one can select

which byte to be erased, in contrast to UV-EPROM, in which the entire contents

of ROM are erased. However, the main advantage of EEPROM is that one can pro-

gram and erase its contents while it is still in the system board. It does not require

physical removal of the memory chip from its socket. In other words, unlike UV-

EPROM, EEPROM does not require an external erasure and programming device.

To utilize EEPROM fully, the designer must incorporate the circuitry to program

the EEPROM into the system board. In general, the cost per bit for EEPROM is

much higher than for UV-EPROM.

Flash memory EPROM

Since the early 1990s, Flash EPROM has become a popular user-program-

mable memory chip, and for good reasons. First, the erasure of the entire contents

takes less than a second, or one might say in a flash, hence its name, Flash mem-

ory. In addition, the erasure method is electrical, and for this reason it is sometimes

referred to as Flash EEPROM. To avoid confusion, it is commonly called Flash

memory. The major difference between EEPROM and Flash memory is that when

Flash memory's contents are erased, the entire device is erased, in contrast to EEP-

ROM, where one can erase a desired byte. Although in many Flash memories

recently made available the contents are divided into blocks and the erasure can be

done block by block, unlike EEPROM, Flash memory has no byte erasure option.

Because Flash memory can be programmed while it is in its socket on the system

board, it is widely used to upgrade the BIOS ROM of the PC. Some designers

believe that Flash memory will replace the hard disk as a mass storage medium.

CHAPTER 0: INTRODUCTION TO COMPUTING 19

Table 0-5: Some UV-EPROM Chips

Part # Capacity Org. Access Pins VPP

2716 16K 2K × 8 450 ns 24 25 V
2732 32K 4K × 8 450 ns 24 25 V

2732A-20 32K 4K × 8 200 ns 24 21 V

27C32-1 32K 4K × 8 450 ns 24 12.5 V CMOS

2764-20 64K 8K × 8 200 ns 28 21 V

2764A-20 64K 8K × 8 200 ns 28 12.5 V

27C64-12 64K 8K × 8 120 ns 28 12.5 V CMOS

27128-25 128K 16K × 8 250 ns 28 21 V

27C128-12 128K 16K × 8 120 ns 28 12.5 V CMOS

27256-25 256K 32K × 8 250 ns 28 12.5 V

27C256-15 256K 32K × 8 150 ns 28 12.5 V CMOS

27512-25 512K 64K × 8 250 ns 28 12.5 V

27C512-15 512K 64K × 8 150 ns 28 12.5 V CMOS

27C010-15 1024K 128K × 8 150 ns 32 12.5 V CMOS

27C020-15 2048K 256K × 8 150 ns 32 12.5 V CMOS

27C040-15 4096K 512K × 8 150 ns 32 12.5 V CMOS

This would increase the performance of the computer tremendously, since Flash

memory is semiconductor memory with access time in the range of 100 ns com-

pared with disk access time in the range of tens of milliseconds. For this to hap-

pen, Flash memory's program/erase cycles must become infinite, just like hard

disks. Program/erase cycle refers to the number of times that a chip can be erased

and reprogrammed before it becomes unusable. At this time, the program/erase

cycle is 100,000 for Flash and EEPROM, 1000 for UV-EPROM, and infinite for

RAM and disks. See Table 0-6 for some sample chips.

Mask ROM

Mask ROM refers to a kind of ROM in which the contents are programmed

by the IC manufacturer. In other words, it is not a user-programmable ROM. The

term mask is used in IC fabrication. Since the process is costly, mask ROM is used

when the needed volume is high (hundreds of thousands) and it is absolutely cer-

tain that the contents will not change. It is common practice to use UV-EPROM or

Flash for the development phase of a project, and only after the code/data have

been finalized is the mask version of the product ordered. The main advantage of

mask ROM is its cost, since it is significantly cheaper than other kinds of ROM,

but if an error is found in the data/code, the entire batch must be thrown away. It

must be noted that all ROM memories have 8 bits for data pins; therefore, the

organization is ×8.

RAM (random access memory)

RAM memory is called volatile memory since cutting off the power to the

IC results in the loss of data. Sometimes RAM is also referred to as RAWM (read

and write memory), in contrast to ROM, which cannot be written to. There are

three types of RAM: static RAM (SRAM), NV-RAM (nonvolatile RAM), and

dynamic RAM (DRAM). Each is explained separately.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 20

Table 0-6: Some EEPROM and Flash Chips

EEPROMs

Part No. Capacity Org. Speed Pins VPP

2816A-25 16K 2K × 8 250 ns 24 5 V

2864A 64K 8K × 8 250 ns 28 5 V

28C64A-25 64K 8K × 8 250 ns 28 5 V CMOS

28C256-15 256K 32K × 8 150 ns 28 5 V

28C256-25 256K 32K × 8 250 ns 28 5 V CMOS

Flash

Part No. Capacity Org. Speed Pins VPP

28F256-20 256K 32K × 8 200 ns 32 12 V CMOS

28F010-15 1024K 128K × 8 150 ns 32 12 V CMOS

28F020-15 2048K 256K × 8 150 ns 32 12 V CMOS

SRAM (static RAM)

Storage cells in static RAM memo-

ry are made of flip-flops and therefore do

not require refreshing in order to keep their

data. This is in contrast to DRAM, dis-

cussed below. The problem with the use of

flip-flops for storage cells is that each cell

requires at least 6 transistors to build, and

the cell holds only 1 bit of data. In recent

years, the cells have been made of 4 tran-

sistors, which still is too many. The use of

4-transistor cells plus the use of CMOS

technology has given birth to a high-capac-

ity SRAM, but its capacity is far below

DRAM. Figure 0-11 shows the pin diagram

for an SRAM chip.

The following is a description of the 6116 SRAM pins.

A0–A10 are for address inputs, where 11 address lines gives 211 = 2K.

WE (write enable) is for writing data into SRAM (active low).

OE (output enable) is for reading data out of SRAM (active low)

CS (chip select) is used to select the memory chip.

I/O0–I/O7 are for data I/O, where 8-bit data lines give an organization of 2K × 8.

The functional diagram for the 6116 SRAM is given in Figure 0-12.

CHAPTER 0: INTRODUCTION TO COMPUTING 21

Figure 0-12. Functional Block Diagram for 6116 SRAM

ADDRESS

DECODER

128 X 128

MEMORY ARRAY

I/O CONTROLINPUT

DATA

CIRCUIT

CONTROL

CIRCUIT

...

... . . .
...

...

A0 Vcc

GND
A10

I/O0

I/O7

CS
OE
WE

Vcc

A8

A9

WE

OE

A10

CS

I/O 8

I/O 7

I/O 6

I/O 5

I/O 4

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

A7

A6

A5

A4

A3

A2

A1

A0

I/O 1

I/O 2

1/O 3

GND

Figure 0-11. 2K × 8 SRAM Pins

Figure 0-13 shows the following steps to write data into SRAM.

1. Provide the addresses to pins A0–A10.

2. Activate the CS pin.

3. Make WE = 0 while RD = 1.

4. Provide the data to pins I/O0–I/O7.

5. Make WE = 1 and data will be written into SRAM on the positive edge of the

WE signal.

The following are steps to read data from SRAM. See Figure 0-14.

1. Provide the addresses to pins A0–A10. This is the start of the access time

(tAA).

2. Activate the CS pin.

3. While WE = 1, a high-to-low pulse on the OE pin will read the data out of the

chip.

NV-RAM (nonvolatile RAM)

Whereas SRAM is volatile, there is a new type of nonvolatile RAM called

NV-RAM. Like other RAMs, it allows the CPU to read and write to it, but when

the power is turned off the contents are not lost. NV-RAM combines the best of

RAM and ROM: the read and write ability of RAM, plus the nonvolatility of

ROM. To retain its contents, every NV-RAM chip internally is made of the follow-

ing components:

1. It uses extremely power-efficient (very low-power consumption) SRAM cells

built out of CMOS.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 22

Figure 0-14. Memory Read Timing for SRAM

Address

CS

OE

Data out Data valid

Address valid

tRC

tAA

Figure 0-13. Memory Write Timing for SRAM

Address

CS

Data in

WE

Data valid

Data
set up

Data
hold

2. It uses an internal lithium battery as a backup energy source.

3. It uses an intelligent control circuitry. The main job of this control circuitry is

to monitor the VCC pin constantly to detect loss of the external power supply.

If the power to the VCC pin falls below out-of-tolerance conditions, the control

circuitry switches automatically to its internal power source, the lithium bat-

tery. The internal lithium power source is used to retain the NV-RAM contents

only when the external power source is off.

It must be emphasized that all three of the components above are incorpo-

rated into a single IC chip, and for this reason nonvolatile RAM is a very expen-

sive type of RAM as far as cost per bit is concerned. Offsetting the cost, however,

is the fact that it can retain its contents up to ten years after the power has been

turned off and allows one to read and write in exactly the same way as SRAM.

Table 0-7 shows some examples of SRAM and NV-RAM parts.

DRAM (dynamic RAM)

Since the early days of the computer, the need for huge, inexpensive

read/write memory has been a major preoccupation of computer designers. In

1970, Intel Corporation introduced the first dynamic RAM (random access mem-

ory). Its density (capacity) was 1024 bits and it used a capacitor to store each bit.

Using a capacitor to store data cuts down the number of transistors needed to build

the cell; however, it requires constant refreshing due to leakage. This is in contrast

to SRAM (static RAM), whose individual cells are made of flip-flops. Since each

bit in SRAM uses a single flip-flop, and each flip-flop requires six transistors,

CHAPTER 0: INTRODUCTION TO COMPUTING 23

Table 0-7: Some SRAM and NV-RAM Chips

SRAM

Part No. Capacity Org. Speed Pins VPP

6116P-1 16K 2K × 8 100 ns 24 CMOS

6116P-2 16K 2K × 8 120 ns 24 CMOS

6116P-3 16K 2K × 8 150 ns 24 CMOS

6116LP-1 16K 2K × 8 100 ns 24 Low-power CMOS

6116LP-2 16K 2K × 8 120 ns 24 Low-power CMOS

6116LP-3 16K 2K × 8 150 ns 24 Low-power CMOS

6264P-10 64K 8K × 8 100 ns 28 CMOS

6264LP-70 64K 8K × 8 70 ns 28 Low-power CMOS

6264LP-12 64K 8K × 8 120 ns 28 Low-power CMOS

62256LP-10 256K 32K × 8 100 ns 28 Low-power CMOS

62256LP-12 256K 32K × 8 120 ns 28 Low-power CMOS

NV-RAM from Dallas Semiconductor

Part No. Capacity Org. Speed Pins VPP

DS1220Y-150 16K 2K × 8 150 ns 24

DS1225AB-150 64K 8K × 8 150 ns 28

DS1230Y-85 256K 32K × 8 85 ns 28

SRAM has much larger memory cells and consequently lower density. The use of

capacitors as storage cells in DRAM results in much smaller net memory cell size.

The advantages and disadvantages of DRAM memory can be summarized

as follows. The major advantages are high density (capacity), cheaper cost per bit,

and lower power consumption per bit. The disadvantage is that it must be refreshed

periodically because the capacitor cell loses its charge; furthermore, while DRAM

is being refreshed, the data cannot be accessed. This is in contrast to SRAM's flip-

flops, which retain data as long as the power is on, do not need to be refreshed, and

whose contents can be accessed at any time. Since 1970, the capacity of DRAM

has exploded. After the 1K-bit (1024) chip came the 4K-bit in 1973, and then the

16K chip in 1976. The 1980s saw the introduction of 64K, 256K, and finally 1M

and 4M memory chips. The 1990s saw 16M, 64M, 256M, and the beginning of

1G-bit DRAM chips. In the 2000s, 2G-bit chips are standard, and as the fabrica-

tion process gets smaller, larger memory chips will be rolling off the manufactur-

ing line. Keep in mind that when talking about IC memory chips, the capacity is

always assumed to be in bits. Therefore, a 1M chip means a 1-megabit chip and a

256K chip means a 256K-bit memory chip. However, when talking about the

memory of a computer system, it is always assumed to be in bytes.

Packaging issue in DRAM

In DRAM there is a problem of packing a large number of cells into a sin-

gle chip with the normal number of pins assigned to addresses. For example, a

64K-bit chip (64K × 1) must have 16 address lines and 1 data line, requiring 16

pins to send in the address if the conventional method is used. This is in addition

to VCC power, ground, and read/write control pins. Using the conventional method

of data access, the large number of pins defeats the purpose of high density and

small packaging, so dearly cherished by IC designers. Therefore, to reduce the

number of pins needed for addresses, multiplexing/demultiplexing is used. The

method used is to split the address in half and send in each half of the address

through the same pins, thereby requiring fewer address pins. Internally, the DRAM

structure is divided into a square of rows and columns. The first half of the address

is called the row and the second half is called the column. For example, in the case

of DRAM of 64K × 1 organization, the first half of the address is sent in through

the 8 pins A0–A7, and by activating RAS (row address strobe), the internal latch-

es inside DRAM grab the first half of the address. After that, the second half of the

address is sent in through the same pins, and by activating CAS (column address

strobe), the internal latches inside DRAM latch the second half of the address. This

results in using 8 pins for addresses plus RAS and CAS, for a total of 10 pins,

instead of the 16 pins that would be required without multiplexing. To access a bit

of data from DRAM, both row and column addresses must be provided. For this

concept to work, there must be a 2-by-1 multiplexer outside the DRAM circuitry

and a demultiplexer inside every DRAM chip. Due to the complexities associated

with DRAM interfacing (RAS, CAS, the need for multiplexer and refreshing cir-

cuitry), some DRAM controllers are designed to make DRAM interfacing much

easier. However, many small microcontroller-based projects that do not require

much RAM (usually less than 64K bytes) use SRAM of types EEPROM and NV-

RAM, instead of DRAM.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 24

DRAM organization

In the discussion of ROM, we noted

that all of these chips have 8 pins for data.

This is not the case for DRAM memory

chips, which can have ×1, ×4, ×8, or ×16

organizations. See Example 0-15 and Table

0-8.

In memory chips, the data pins are

also called I/O. In some DRAMs there are

separate Din and Dout pins. Figure 0-15

shows a 256K × 1 DRAM chip with pins

A0–A8 for address, RAS and CAS, WE (write enable), and data in and data out,

as well as power and ground.

Memory address decoding

Next we discuss address decoding. The CPU provides the address of the

data desired, but it is the job of the decoding circuitry to locate the selected mem-

ory block. To explore the concept of decoding circuitry, we look at various meth-

ods used in decoding the addresses. In this discussion we use SRAM or ROM for

the sake of simplicity.

Memory chips have one or more pins called CS (chip select), which must

be activated for the memory's contents to be accessed. Sometimes the chip select

is also referred to as chip enable (CE). In connecting a memory chip to the CPU,

CHAPTER 0: INTRODUCTION TO COMPUTING 25

Table 0-8: Some DRAMs

Part No. Speed Capacity Org. Pins

4164-15 150 ns 64K 64K × 1 16

41464-8 80 ns 256K 64K × 4 18

41256-15 150 ns 256K 256K × 1 16

41256-6 60 ns 256K 256K × 1 16

414256-10 100 ns 1M 256K × 4 20

511000P-8 80 ns 1M 1M × 1 18

514100-7 70 ns 4M 4M × 1 20

GND

CAS

D OUT

A6

A3

A4

A5

A7

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

A8

D IN

WE

RAS

A0

A2

A1

Vcc

Figure 0-15. 256K × 1 DRAM

Discuss the number of pins set aside for addresses in each of the following memory

chips. (a) 16K × 4 DRAM (b) 16K × 4 SRAM

Solution:

Since 214 = 16K:

(a) For DRAM we have 7 pins (A0–A6) for the address pins and 2 pins for RAS and

CAS.

(b) For SRAM we have 14 pins for address and no pins for RAS and CAS since they

are associated only with DRAM. In both cases we have 4 pins for the data bus.

Example 0-15

note the following points.

1. The data bus of the CPU is connected directly to the data pins of the memory

chip.

2. Control signals RD (read) and WR (memory write) from the CPU are connect-

ed to the OE (output enable) and WE (write enable) pins of the memory chip,

respectively.

3. In the case of the address buses, while the lower bits of the addresses from the

CPU go directly to the memory chip address pins, the upper ones are used to

activate the CS pin of the memory chip. It is the CS pin that along with

RD/WR allows the flow of data in or out of the memory chip. No data can be

written into or read from the memory chip unless CS is activated.

As can be seen from the data sheets of SRAM and ROM, the CS input of

a memory chip is normally active low and is activated by the output of the mem-

ory decoder. Normally memories are divided into blocks, and the output of the

decoder selects a given memory block. There are three ways to generate a memo-

ry block selector: (a) using simple logic gates, (b) using the 74LS138, or (c) using

programmable logics such as CPLD and FPGA. Each method is described below.

Simple logic gate address decoder

The simplest method of constructing decoding circuitry is the use of a

NAND gate. The output of a NAND gate is active low, and the CS pin is also

active low, which makes them a perfect match. In cases where the CS input is

active high, an AND gate must be used. Using a combination of NAND gates and

inverters, one can decode any address range. An example of this is shown in Figure

0-16, which shows that A15–A12 must be 0011 in order to select the chip. This

results in the assignment of addresses 3000H to 3FFFH to this memory chip.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 26

A12

A13

A14

A15

CS

RD WR

MEMR

MEMW

4K × 8

A0

A
0
 -

 A
1
1

A11

D7

D7

D0

D0

Figure 0-16. Logic Gate as Decoder

Using the 74LS138 3-8

decoder

This used to be one of the

most widely used address

decoders. The 3 inputs A, B, and

C generate 8 active-low outputs

Y0–Y7. See Figure 0-17. Each

Y output is connected to CS of a

memory chip, allowing control

of 8 memory blocks by a single

74LS138. In the 74LS138,

where A, B, and C select which

output is activated, there are

three additional inputs, G2A,

G2B, and G1. G2A and G2B are

both active low, and G1 is active

high. If any one of the inputs

G1, G2A, or G2B is not connect-

ed to an address signal (some-

times they are connected to a

control signal), they must be

activated permanently by either

VCC or ground, depending on the

activation level. Example 0-16

shows the design and the address

range calculation for the

74LS138 decoder.

CHAPTER 0: INTRODUCTION TO COMPUTING 27

Figure 0-17. 74LS138 Decoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A

B

C

G2A G2B

Enable

G1

Block Diagram

Function Table

Vcc GND

Inputs

Enable Select

G1 G2 C B A

Outputs

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

X H

L X

H L

H L

H L

H L

H L

H L

H L

H L

X X X

X X X

L L L

L L H

L H L

L H H

H L L

H L H

H H L

H H H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

A12

A13

A14

A15

GND

Vcc

CE

OE Vpp

MEMR

Vcc

4K × 8

A0

A
0
 -

 A
1
1

A11

D7

D7

D0

D0

Figure 0-18. Using 74LS138 as Decoder

A

B

C

G2A

G2B

G1

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Using programmable logic as an address decoder

Other widely used decoders are programmable logic chips such as PAL,

GAL, and FPGA chips. One disadvantage of these chips is that they require

PAL/GAL/FPGA software and a burner (programmer), whereas the 74LS138

needs neither of these. The advantage of these chips is that they can be pro-

grammed for any combination of address ranges, and so are much more versatile.

This plus the fact that PAL/GAL/FPGA chips have 10 or more inputs (in contrast

to 6 in the 74138) means that they can accommodate more address inputs.

Review Questions

1. How many bytes is 24 kilobytes?

2. What does “RAM” stand for? How is it used in computer systems?

3. What does “ROM” stand for? How is it used in computer systems?

4. Why is RAM called volatile memory?

5. List the three major components of a computer system.

6. What does “CPU” stand for? Explain its function in a computer.

7. List the three types of buses found in computer systems and state briefly the

purpose of each type of bus.

8. State which of the following is unidirectional and which is bidirectional:

(a) data bus (b) address bus

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 28

Looking at the design in Figure 0-18, find the address range for the following:

(a) Y4, (b) Y2, and (c) Y7.

Solution:

(a) The address range for Y4 is calculated as follows.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

The above shows that the range for Y4 is 4000H to 4FFFH. In Figure 0-18, notice that

A15 must be 0 for the decoder to be activated. Y4 will be selected when A14 A13 A12

= 100 (4 in binary). The remaining A11–A0 will be 0 for the lowest address and 1 for

the highest address.

(b) The address range for Y2 is 2000H to 2FFFH.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

(c) The address range for Y7 is 7000H to 7FFFH.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Example 0-16

9. If an address bus for a given computer has 16 lines, what is the maximum

amount of memory it can access?

10. The speed of semiconductor memory is in the range of

(a) microseconds (b) milliseconds

(c) nanoseconds (d) picoseconds

11. Find the organization and chip capacity for each ROM with the indicated num-

ber of address and data pins.

(a) 14 address, 8 data (b) 16 address, 8 data (c) 12 address, 8 data

12. Find the organization and chip capacity for each RAM with the indicated num-

ber of address and data pins.

(a) 11 address, 1 data SRAM (b) 13 address, 4 data SRAM

(c) 17 address, 8 data SRAM (d) 8 address, 4 data DRAM

(e) 9 address, 1 data DRAM (f) 9 address, 4 data DRAM

13. Find the capacity and number of pins set aside for address and data for mem-

ory chips with the following organizations.

(a) 16K × 4 SRAM (b) 32K × 8 EPROM (c) 1M × 1 DRAM

(d) 256K × 4 SRAM (e) 64K × 8 EEPROM (f) 1M × 4 DRAM

14. Which of the following is (are) volatile memory?

(a) EEPROM (b) SRAM (c) DRAM (d) NV-RAM

15. A given memory block uses addresses 4000H–7FFFH. How many kilobytes is

this memory block?

16. The 74138 is a(n) _____ by _____ decoder.

17. In the 74138 give the status of G2A and G2B for the chip to be enabled.

18. In the 74138 give the status of G1 for the chip to be enabled.

19. In Example 0-16, what is the range of addresses assigned to Y5?

SECTION 0.4: CPU ARCHITECTURE

In this section we will examine the inside of a CPU. Then, we will com-

pare the Harvard and von Neumann architectures.

Inside CPU

A program stored in memory provides instructions to the CPU to perform

an action. See Figure 0-19. The action can simply be adding data such as payroll

data or controlling a machine such as a robot. The function of the CPU is to fetch

these instructions from memory and execute them. To perform the actions of fetch

and execute, all CPUs are equipped with resources such as the following:

1. Foremost among the resources at the disposal of the CPU are a number of reg-
isters. The CPU uses registers to store information temporarily. The informa-

tion could be two values to be processed, or the address of the value needed to

be fetched from memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit,

or even 64-bit registers, depending on the CPU. In general, the more and big-

ger the registers, the better the CPU. The disadvantage of more and bigger reg-

isters is the increased cost of such a CPU.

2. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU sec-

tion of the CPU is responsible for performing arithmetic functions such as add,

CHAPTER 0: INTRODUCTION TO COMPUTING 29

subtract, multiply, and divide, and logic functions such as AND, OR, and NOT.

3. Every CPU has what is called a program counter. The function of the program

counter is to point to the address of the next instruction to be executed. As each

instruction is executed, the program counter is incremented to point to the

address of the next instruction to be executed. The contents of the program

counter are placed on the address bus to find and fetch the desired instruction.

In the IBM PC, the program counter is a register called IP, or the instruction

pointer.

4. The function of the instruction decoder is to interpret the instruction fetched

into the CPU. One can think of the instruction decoder as a kind of dictionary,

storing the meaning of each instruction and what steps the CPU should take

upon receiving a given instruction. Just as a dictionary requires more pages the

more words it defines, a CPU capable of understanding more instructions

requires more transistors to design.

Internal working of CPUs

To demonstrate some of the concepts discussed above, a step-by-step

analysis of the process a CPU would go through to add three numbers is given

next. Assume that an imaginary CPU has registers called A, B, C, and D. It has an

8-bit data bus and a 16-bit address bus. Therefore, the CPU can access memory

from addresses 0000 to FFFFH (for a total of 10000H locations). The action to be

performed by the CPU is to put hexadecimal value 21 into register A, and then add

to register A the values 42H and 12H. Assume that the code for the CPU to move

a value to register A is 1011 0000 (B0H) and the code for adding a value to regis-

ter A is 0000 0100 (04H). The necessary steps and code to perform these opera-

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 30

Figure 0-19. Internal Block Diagram of a CPU

ALU
Flags

Program Counter

Register A

Register B

Register C

Register D

Instruction Register

Instruction

decoder, timing,

and control

A
d
d
ress B

u
s

C
o
n
tro

l B
u
ses

D
ata B

u
s

Internal

buses

tions are as follows.

Action Code Data
Move value 21H into register A B0H 21H
Add value 42H to register A 04H 42H
Add value 12H to register A 04H 12H

If the program to perform the actions listed above is stored in memory

locations starting at 1400H, the following would represent the contents for each

memory address location:

Memory address Contents of memory address
1400 (B0)code for moving a value to register A
1401 (21)value to be moved
1402 (04)code for adding a value to register A
1403 (42)value to be added
1404 (04)code for adding a value to register A
1405 (12)value to be added
1406 (F4)code for halt

The actions performed by the CPU to run the program above would be as

follows:

1. The CPU’s program counter can have a value between 0000 and FFFFH. The

program counter must be set to the value 1400H, indicating the address of the

first instruction code to be executed. After the program counter has been

loaded with the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory circuit-

ry finds the location while the CPU activates the READ signal, indicating to

memory that it wants the byte at location 1400H. This causes the contents of

memory location 1400H, which is B0, to be put on the data bus and brought

into the CPU.

3. The CPU decodes the instruction B0 with the help of its instruction decoder

dictionary. When it finds the definition for that instruction it knows it must

bring the byte in the next memory location into register A of the CPU.

Therefore, it commands its controller circuitry to do exactly that. When it

brings in value 21H from memory location 1401, it makes sure that the doors

of all registers are closed except register A. Therefore, when value 21H comes

into the CPU it will go directly into register A. After completing one instruc-

tion, the program counter points to the address of the next instruction to be exe-

cuted, which in this case is 1402H. Address 1402 is sent out on the address bus

to fetch the next instruction.

4. From memory location 1402H the CPU fetches code 04H. After decoding, the

CPU knows that it must add the byte sitting at the next address (1403) to the

contents of register A. After the CPU brings the value (in this case, 42H) into

register A, it provides the contents of register A along with this value to the

ALU to perform the addition. It then takes the result of the addition from the

ALU’s output and puts it into register A. Meanwhile the program counter

becomes 1404, the address of the next instruction.

CHAPTER 0: INTRODUCTION TO COMPUTING 31

5. Address 1404H is put on the address bus and the code is fetched into the CPU,

decoded, and executed. This code again is adding a value to register A. The

program counter is updated to 1406H.

6. Finally, the contents of address 1406 are fetched in and executed. This HALT

instruction tells the CPU to stop incrementing the program counter and asking

for the next instruction. Without the HALT, the CPU would continue updating

the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How

would the CPU distinguish between data 04 to be added and code 04? Remember

that code 04 for this CPU means “move the next value into register A.” Therefore,

the CPU will not try to decode the next value. It simply moves the contents of the

following memory location into register A, regardless of its value.

Harvard and von Neumann architectures

Every microprocessor must have memory space to store program (code)

and data. While code provides instructions to the CPU, the data provides the infor-

mation to be processed. The CPU uses buses (wire traces) to access the code ROM

and data RAM memory spaces. The early computers used the same bus for access-

ing both the code and data. Such an architecture is commonly referred to as von
Neumann (Princeton) architecture. That means for von Neumann computers, the

process of accessing the code or data could cause them to get in each other’s way

and slow down the processing speed of the CPU, because each had to wait for the

other to finish fetching. To speed up the process of program execution, some CPUs

use what is called Harvard architecture. In Harvard architecture, we have separate

buses for the code and data memory. See Figure 0-20. That means that we need

four sets of buses: (1) a set of data buses for carrying data into and out of the CPU,

(2) a set of address buses for accessing the data, (3) a set of data buses for carry-

ing code into the CPU, and (4) an address bus for accessing the code. See Figure

0-20. This is easy to implement inside an IC chip such as a microcontroller where

both ROM code and data RAM are internal (on-chip) and distances are on the

micron and millimeter scale. But implementing Harvard architecture for systems

such as x86 IBM PC-type computers is very expensive because the RAM and

ROM that hold code and data are external to the CPU. Separate wire traces for data

and code on the motherboard will make the board large and expensive. For exam-

ple, for a Pentium microprocessor with a 64-bit data bus and a 32-bit address bus

we will need about 100 wire traces on the motherboard if it is von Neumann archi-

tecture (96 for address and data, plus a few others for control signals of read and

write and so on). But the number of wire traces will double to 200 if we use

Harvard architecture. Harvard architecture will also necessitate a large number of

pins coming out of the microprocessor itself. For this reason you do not see

Harvard architecture implemented in the world of PCs and workstations. This is

also the reason that microcontrollers such as AVR use Harvard architecture inter-

nally, but they still use von Neumann architecture if they need external memory

for code and data space. The von Neumann architecture was developed at

Princeton University, while the Harvard architecture was the work of Harvard

University.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 32

Review Questions

1. What does “ALU” stand for? What is its purpose?

2. How are registers used in computer systems?

3. What is the purpose of the program counter?

4. What is the purpose of the instruction decoder?

5. True or false. Harvard architecture uses the same address and data buses to

fetch both code and data.

SUMMARY

The binary number system represents all numbers with a combination of

the two binary digits, 0 and 1. The use of binary systems is necessary in digital

computers because only two states can be represented: on or off. Any binary num-

ber can be coded directly into its hexadecimal equivalent for the convenience of

humans. Converting from binary/hex to decimal, and vice versa, is a straightfor-

ward process that becomes easy with practice. ASCII code is a binary code used

to represent alphanumeric data internally in the computer. It is frequently used in

peripheral devices for input and/or output.

The AND, OR, and inverter logic gates are the basic building blocks of

simple circuits. NAND, NOR, and XOR gates are also used to implement circuit

design. Diagrams of half-adders and full-adders were given as examples of the use

of logic gates for circuit design. Decoders are used to detect certain addresses.

Flip-flops are used to latch in data until other circuits are ready for it.

The major components of any computer system are the CPU, memory, and

CHAPTER 0: INTRODUCTION TO COMPUTING 33

Figure 0-20. von Neumann vs. Harvard Architecture

I/O devices. “Memory” refers to temporary or permanent storage of data. In most

systems, memory can be accessed as bytes or words. The terms kilobyte,

megabyte, gigabyte, and terabyte are used to refer to large numbers of bytes. There

are two main types of memory in computer systems: RAM and ROM. RAM (ran-

dom access memory) is used for temporary storage of programs and data. ROM

(read-only memory) is used for permanent storage of programs and data that the

computer system must have in order to function. All components of the computer

system are under the control of the CPU. Peripheral devices such as I/O (input/out-

put) devices allow the CPU to communicate with humans or other computer sys-

tems. There are three types of buses in computers: address, control, and data.

Control buses are used by the CPU to direct other devices. The address bus is used

by the CPU to locate a device or a memory location. Data buses are used to send

information back and forth between the CPU and other devices.

This chapter provided an overview of semiconductor memories. Types of

memories were compared in terms of their capacity, organization, and access time.

ROM (read-only memory) is nonvolatile memory typically used to store programs

in embedded systems. The relative advantages of various types of ROM were

described, including PROM, EPROM, UV-EPROM, EEPROM, Flash memory

EPROM, and mask ROM.

Address decoding techniques using simple logic gates, decoders, and pro-

grammable logic were covered.

The computer organization and the internals of the CPU were also covered.

PROBLEMS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1. Convert the following decimal numbers to binary:

(a) 12 (b) 123 (c) 63 (d) 128 (e) 1000

2. Convert the following binary numbers to decimal:

(a) 100100 (b) 1000001 (c) 11101 (d) 1010 (e) 00100010

3. Convert the values in Problem 2 to hexadecimal.

4. Convert the following hex numbers to binary and decimal:

(a) 2B9H (b) F44H (c) 912H (d) 2BH (e) FFFFH

5. Convert the values in Problem 1 to hex.

6. Find the 2’s complement of the following binary numbers:

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001

7. Add the following hex values:

(a) 2CH + 3FH (b) F34H + 5D6H (c) 20000H + 12FFH

(d) FFFFH + 2222H

8. Perform hex subtraction for the following:

(a) 24FH – 129H (b) FE9H – 5CCH (c) 2FFFFH – FFFFFH

(d) 9FF25H – 4DD99H

9. Show the ASCII codes for numbers 0, 1, 2, 3, ..., 9 in both hex and binary.

10. Show the ASCII code (in hex) for the following strings:

“U.S.A. is a country” CR,LF

“in North America” CR,LF

(CR is carriage return, LF is line feed)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 34

SECTION 0.2: DIGITAL PRIMER

11. Draw a 3-input OR gate using a 2-input OR gate.

12. Show the truth table for a 3-input OR gate.

13. Draw a 3-input AND gate using a 2-input AND gate.

14. Show the truth table for a 3-input AND gate.

15. Design a 3-input XOR gate with a 2-input XOR gate. Show the truth table for

a 3-input XOR.

16. List the truth table for a 3-input NAND.

17. List the truth table for a 3-input NOR.

18. Show the decoder for binary 1100.

19. Show the decoder for binary 11011.

20. List the truth table for a D-FF.

SECTION 0.3: SEMICONDUCTOR MEMORY

21. Answer the following:

(a) How many nibbles are 16 bits?

(b) How many bytes are 32 bits?

(c) If a word is defined as 16 bits, how many words is a 64-bit data item?

(d) What is the exact value (in decimal) of 1 meg?

(e) How many kilobytes is 1 meg?

(f) What is the exact value (in decimal) of 1 gigabyte?

(g) How many kilobytes is 1 gigabyte?

(h) How many megs is 1 gigabyte?

(i) If a given computer has a total of 8 megabytes of memory, how many

bytes (in decimal) is this? How many kilobytes is this?

22. A given mass storage device such as a hard disk can store 2 gigabytes of infor-

mation. Assuming that each page of text has 25 rows and each row has 80

columns of ASCII characters (each character = 1 byte), approximately how

many pages of information can this disk store?

23. In a given byte-addressable computer, memory locations 10000H to 9FFFFH

are available for user programs. The first location is 10000H and the last loca-

tion is 9FFFFH. Calculate the following:

(a) The total number of bytes available (in decimal)

(b) The total number of kilobytes (in decimal)

24. A given computer has a 32-bit data bus. What is the largest number that can be

carried into the CPU at a time?

25. Below are listed several computers with their data bus widths. For each com-

puter, list the maximum value that can be brought into the CPU at a time (in

both hex and decimal).

(a) Apple 2 with an 8-bit data bus

(b) x86 PC with a 16-bit data bus

(c) x86 PC with a 32-bit data bus

(d) Cray supercomputer with a 64-bit data bus

26. Find the total amount of memory, in the units requested, for each of the follow-

ing CPUs, given the size of the address buses:

CHAPTER 0: INTRODUCTION TO COMPUTING 35

(a) 16-bit address bus (in K)

(b) 24-bit address bus (in megs)

(c) 32-bit address bus (in megabytes and gigabytes)

(d) 48-bit address bus (in megabytes, gigabytes, and terabytes)

27. Of the data bus and address bus, which is unidirectional and which is bidirec-

tional?

28. What is the difference in capacity between a 4M memory chip and 4M of com-

puter memory?

29. True or false. The more address pins, the more memory locations are inside the

chip. (Assume that the number of data pins is fixed.)

30. True or false. The more data pins, the more each location inside the chip will

hold.

31. True or false. The more data pins, the higher the capacity of the memory chip.

32. True or false. The more data pins and address pins, the greater the capacity of

the memory chip.

33. The speed of a memory chip is referred to as its ________________.

34. True or false. The price of memory chips varies according to capacity and

speed.

35. The main advantage of EEPROM over UV-EPROM is ________________.

36. True or false. SRAM has a larger cell size than DRAM.

37. Which of the following, EPROM, DRAM, or SRAM, must be refreshed peri-

odically?

38. Which memory is used for PC cache?

39. Which of the following, SRAM, UV-EPROM, NV-RAM, or DRAM, is

volatile memory?

40. RAS and CAS are associated with which type of memory?

(a) EPROM (b) SRAM (c) DRAM (d) all of the above

41. Which type of memory needs an external multiplexer?

(a) EPROM (b) SRAM (c) DRAM (d) all of the above

42. Find the organization and capacity of memory chips with the following pins.

(a) EEPROM A0–A14, D0–D7 (b) UV-EPROM A0–A12, D0–D7

(c) SRAM A0–A11, D0–D7 (d) SRAM A0–A12, D0–D7

(e) DRAM A0–A10, D0 (f) SRAM A0–A12, D0

(g) EEPROM A0–A11, D0–D7 (h) UV-EPROM A0–A10, D0–D7

(i) DRAM A0–A8, D0–D3 (j) DRAM A0–A7, D0–D7

43. Find the capacity, address, and data pins for the following memory organiza-

tions.

(a) 16K × 8 ROM (b) 32K × 8 ROM

(c) 64K × 8 SRAM (d) 256K × 8 EEPROM

(e) 64K × 8 ROM (f) 64K × 4 DRAM

(g) 1M × 8 SRAM (h) 4M × 4 DRAM

(i) 64K × 8 NV-RAM

44. Find the address range of the memory design in the diagram.

45. Using NAND gates and inverters, design decoding circuitry for the address

range 2000H–2FFFH.

46. Find the address range for Y0, Y3, and Y6 of the 74LS138 for the diagrammed

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 36

design.

47. Using the 74138, design the memory

decoding circuitry in which the mem-

ory block controlled by Y0 is in the

range 0000H to 1FFFH. Indicate the

size of the memory block controlled

by each Y.

48. Find the address range for Y3, Y6, and

Y7 in Problem 47.

49. Using the 74138, design memory decoding circuit-

ry in which the memory block controlled by Y0 is

in the 0000H to 3FFFH space. Indicate the size of

the memory block controlled by each Y.

50. Find the address range for Y1, Y2, and Y3 in

Problem 49.

SECTION 0.4: CPU AND HARVARD ARCHITEC-

TURE

51. Which register of the CPU holds the address of the instruction to be fetched?

52. Which section of the CPU is responsible for performing addition?

53. List the three bus types present in every CPU.

ANSWERS TO REVIEW QUESTIONS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1. Computers use the binary system because each bit can have one of two voltage levels: on and

off.

2. 3410 = 1000102 = 2216

3. 1101012 = 3516 = 5310

4. 1110001

5. 010100

6. 461

7. 275

8. 38 30 78 38 36 20 43 50 55 73

SECTION 0.2: DIGITAL PRIMER

1. AND

2. OR

3. XOR

4. Buffer

5. Storing data

6. Decoder

SECTION 0.3: SEMICONDUCTOR MEMORY

1. 24,576

2. Random access memory; it is used for temporary storage of programs that the CPU is run-

CHAPTER 0: INTRODUCTION TO COMPUTING 37

A0

CS
A14

A0

A13

A15

D7 - D0

16K × 8

Diagram for Problem 44

A14

A12 A

B

C

G2A

G2B

G1

A13

GND

GND

A15

74LS138

Diagram for Problem 46

ning, such as the operating system, word processing programs, etc.

3. Read-only memory; it is used for permanent programs such as those that control the keyboard,

etc.

4. The contents of RAM are lost when the computer is powered off.

5. The CPU, memory, and I/O devices

6. Central processing unit; it can be considered the “brain” of the computer; it executes the pro-

grams and controls all other devices in the computer.

7. The address bus carries the location (address) needed by the CPU; the data bus carries infor-

mation in and out of the CPU; the control bus is used by the CPU to send signals controlling

I/O devices.

8. (a) bidirectional (b) unidirectional

9. 64K, or 65,536 bytes

10. c

11. (a) 16K × 8, 128K bits (b) 64K × 8, 512K (c) 4K × 8, 32K

12. (a) 2K × 1, 2K bits (b) 8K × 4, 32K (c) 128K × 8, 1M

(d) 64K × 4, 256K (e) 256K × 1, 256K (f) 256K × 4, 1M

13. (a) 64K bits, 14 address, and 4 data (b) 256K, 15 address, and 8 data

(c) 1M, 10 address, and 1 data (d) 1M, 18 address, and 4 data

(e) 512K, 16 address, and 8 data (f) 4M, 10 address, and 4 data

14. b, c

15. 16K bytes

16. 3, 8

17. Both must be low.

18. G1 must be high.

19. 5000H–5FFFH

SECTION 0.4: CPU ARCHITECTURE

1. Arithmetic/logic unit; it performs all arithmetic and logic operations.

2. They are used for temporary storage of information.

3. It holds the address of the next instruction to be executed.

4. It tells the CPU what actions to perform for each instruction.

5. False

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 38

